蓝桥杯嵌入式——第十一届蓝桥杯嵌入式国赛

蓝桥杯嵌入式——第十一届蓝桥杯嵌入式国赛

之前准备省赛的时候用的是旧版的STM32F103,从准备国赛开始就用新版STM32G431平台了,主要是想经过新版的准备学习一下HAL库以及CubeMX的使用。用了几天的新版,感觉新版的还是比较香,单纯从配置各个模块来说,比旧版的省太多时间了,而且速度也比较块,单纯从比赛来说,还是推荐新版,因为配置方便,调试器兼容KEIL5,KEI5比KEIL4好用太多了,也有自动补全,在写代码的时候速度也会比较快一些。不过旧版的资料确实比较多,选择也看大家。所以之后的国赛赛题都是用的新版,当前除了模块的配置外,其他的代码其实都是一样的,没多大区别,所以旧版也是可以参考我的代码。

一、赛题

怎么说呢,其实国赛的难度也不是很大,只是多用到了几个模块而已,十一届的国赛难度就和省赛的差不多,可能还没有前面某几届的省赛的难度高。
这一届的赛题主要考察了ADC、定时器的输入捕获、PWM的输出。 建议一定要掌握定时器的输出翻转模式,学会使用输出翻转模式输出频率和占空比都可变得PWM波, 比赛中都可以用这种方法搞定所有的PWM的考点。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、CubeMX模块配置

  1. ADC的配置
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  2. 输入捕获的配置
    在这里插入图片描述
    在这里插入图片描述
    3.PWM配置
    在这里插入图片描述
    在这里插入图片描述

三、主程序代码

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define DATA				0
#define SETTING			1
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc2;
DMA_HandleTypeDef hdma_adc2;

TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim4;

/* USER CODE BEGIN PV */
uint16_t adc_value[2];
uint8_t key_tick = 0;
_Bool interface = DATA;
float v1 = 0.1;
float v2 = 0.2;
uint16_t f1 = 2030;
uint16_t f2 = 300;
uint8_t vd = 0;
uint8_t fd = 1;
uint8_t vd_temp = 1;
uint8_t fd_temp = 2;
uint8_t lcd_str[20];
_Bool select = 0;

__IO uint16_t TIM2_IC3_ReadValue1 = 0, TIM2_IC3_ReadValue2 = 0;
__IO uint16_t TIM2_IC3_CaptureNumber = 0;
__IO uint32_t TIM2_IC3_Capture = 0;
__IO uint32_t TIM2_IC3_Freq = 0;

__IO uint16_t TIM2_IC2_ReadValue1 = 0, TIM2_IC2_ReadValue2 = 0;
__IO uint16_t TIM2_IC2_CaptureNumber = 0;
__IO uint32_t TIM2_IC2_Capture = 0;
__IO uint32_t TIM2_IC2_Freq = 0;

uint16_t CCR3_Val = 1000000 / 3000;

uint16_t pwm_refresh_tick = 0;
_Bool pwm_refresh_flag = 0;
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_TIM4_Init(void);
static void MX_ADC2_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM3_Init(void);
/* USER CODE BEGIN PFP */
void led_proc(void);
void lcd_proc(void);
void key_scan(void);
void adc_proc(void);
void pwm_proc(void);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
    
    
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_TIM4_Init();
  MX_ADC2_Init();
  MX_TIM2_Init();
  MX_TIM3_Init();
  /* USER CODE BEGIN 2 */
	
	HAL_TIM_Base_Start_IT(&htim4);
	HAL_TIM_IC_Start_IT(&htim2,TIM_CHANNEL_2);
	HAL_TIM_IC_Start_IT(&htim2,TIM_CHANNEL_3);
	HAL_TIM_OC_Start_IT(&htim3,TIM_CHANNEL_2);
	
	HAL_ADCEx_Calibration_Start(&hadc2,ADC_SINGLE_ENDED);
	
	HAL_ADC_Start_DMA(&hadc2,(uint32_t*)adc_value,2);
	
	led_init();
	LCD_Init();
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
	
	LCD_Clear(Black);
	LCD_SetBackColor(Black);
	LCD_SetTextColor(White);
	
	LCD_DisplayStringLine(Line0, (uint8_t *)"                    ");
	
  while (1)
  {
    
    
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
		led_proc();
		lcd_proc();
		adc_proc();
		pwm_proc();
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
    
    
  RCC_OscInitTypeDef RCC_OscInitStruct = {
    
    0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {
    
    0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {
    
    0};

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the CPU, AHB and APB busses clocks
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV3;
  RCC_OscInitStruct.PLL.PLLN = 20;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB busses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  /** Initializes the peripherals clocks
  */
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC12;
  PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    
    
    Error_Handler();
  }
}

/**
  * @brief ADC2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC2_Init(void)
{
    
    

  /* USER CODE BEGIN ADC2_Init 0 */

  /* USER CODE END ADC2_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {
    
    0};

  /* USER CODE BEGIN ADC2_Init 1 */

  /* USER CODE END ADC2_Init 1 */
  /** Common config
  */
  hadc2.Instance = ADC2;
  hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  hadc2.Init.Resolution = ADC_RESOLUTION_12B;
  hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc2.Init.GainCompensation = 0;
  hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE;
  hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc2.Init.LowPowerAutoWait = DISABLE;
  hadc2.Init.ContinuousConvMode = ENABLE;
  hadc2.Init.NbrOfConversion = 2;
  hadc2.Init.DiscontinuousConvMode = DISABLE;
  hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc2.Init.DMAContinuousRequests = ENABLE;
  hadc2.Init.Overrun = ADC_OVR_DATA_PRESERVED;
  hadc2.Init.OversamplingMode = DISABLE;
  if (HAL_ADC_Init(&hadc2) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_17;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_13;
  sConfig.Rank = ADC_REGULAR_RANK_2;
  if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  /* USER CODE BEGIN ADC2_Init 2 */

  /* USER CODE END ADC2_Init 2 */

}

/**
  * @brief TIM2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM2_Init(void)
{
    
    

  /* USER CODE BEGIN TIM2_Init 0 */

  /* USER CODE END TIM2_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {
    
    0};
  TIM_MasterConfigTypeDef sMasterConfig = {
    
    0};
  TIM_IC_InitTypeDef sConfigIC = {
    
    0};

  /* USER CODE BEGIN TIM2_Init 1 */

  /* USER CODE END TIM2_Init 1 */
  htim2.Instance = TIM2;
  htim2.Init.Prescaler = 80 - 1;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = 4.294967295E9;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  sConfigIC.ICFilter = 0;
  if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_3) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  /* USER CODE BEGIN TIM2_Init 2 */

  /* USER CODE END TIM2_Init 2 */

}

/**
  * @brief TIM3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM3_Init(void)
{
    
    

  /* USER CODE BEGIN TIM3_Init 0 */

  /* USER CODE END TIM3_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {
    
    0};
  TIM_MasterConfigTypeDef sMasterConfig = {
    
    0};
  TIM_OC_InitTypeDef sConfigOC = {
    
    0};

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 80 - 1;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 65535;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
  if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  if (HAL_TIM_OC_Init(&htim3) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_TOGGLE;
  sConfigOC.Pulse = 500;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  /* USER CODE BEGIN TIM3_Init 2 */

  /* USER CODE END TIM3_Init 2 */
  HAL_TIM_MspPostInit(&htim3);

}

/**
  * @brief TIM4 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM4_Init(void)
{
    
    

  /* USER CODE BEGIN TIM4_Init 0 */

  /* USER CODE END TIM4_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {
    
    0};
  TIM_MasterConfigTypeDef sMasterConfig = {
    
    0};

  /* USER CODE BEGIN TIM4_Init 1 */

  /* USER CODE END TIM4_Init 1 */
  htim4.Instance = TIM4;
  htim4.Init.Prescaler = 80 - 1;
  htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim4.Init.Period = 999;
  htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  /* USER CODE BEGIN TIM4_Init 2 */

  /* USER CODE END TIM4_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{
    
    

  /* DMA controller clock enable */
  __HAL_RCC_DMAMUX1_CLK_ENABLE();
  __HAL_RCC_DMA1_CLK_ENABLE();

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
    
    
  GPIO_InitTypeDef GPIO_InitStruct = {
    
    0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOF_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_0
                          |GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4
                          |GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8
                          |GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_2, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_5|GPIO_PIN_8|GPIO_PIN_9, GPIO_PIN_RESET);

  /*Configure GPIO pins : PC13 PC14 PC15 PC0
                           PC1 PC2 PC3 PC4
                           PC5 PC6 PC7 PC8
                           PC9 PC10 PC11 PC12 */
  GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_0
                          |GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4
                          |GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8
                          |GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /*Configure GPIO pin : PA0 */
  GPIO_InitStruct.Pin = GPIO_PIN_0;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pins : PB0 PB1 PB2 */
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /*Configure GPIO pin : PA8 */
  GPIO_InitStruct.Pin = GPIO_PIN_8;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pin : PD2 */
  GPIO_InitStruct.Pin = GPIO_PIN_2;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

  /*Configure GPIO pins : PB5 PB8 PB9 */
  GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_8|GPIO_PIN_9;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */
void led_proc(void)
{
    
    
	if(interface == DATA)
	{
    
    
		if(v1 > v2)
			led_ctrl(0x0100 << vd,1);
		else
			led_ctrl(0x0100 << vd,0);
		if(f1 > f2)
			led_ctrl(0x0100 << fd,1);
		else
			led_ctrl(0x0100 << fd,0);
	}
}

void lcd_proc(void)
{
    
    
	if(interface == DATA)
	{
    
    
		memset(lcd_str,0,sizeof(lcd_str));
		snprintf((char*)lcd_str,20,"    DATA            ");
		LCD_DisplayStringLine(Line1,lcd_str);
		
		memset(lcd_str,0,sizeof(lcd_str));
		snprintf((char*)lcd_str,20,"    V1:%.1f          ",v1);
		LCD_DisplayStringLine(Line3,lcd_str);
		
		memset(lcd_str,0,sizeof(lcd_str));
		snprintf((char*)lcd_str,20,"    V2:%.1f          ",v2);
		LCD_DisplayStringLine(Line4,lcd_str);
		
		memset(lcd_str,0,sizeof(lcd_str));
		snprintf((char*)lcd_str,20,"    F1:%dHz        ",f1);
		LCD_DisplayStringLine(Line5,lcd_str);
		
		memset(lcd_str,0,sizeof(lcd_str));
		snprintf((char*)lcd_str,20,"    F2:%dHz        ",f2);
		LCD_DisplayStringLine(Line6,lcd_str);
	}
	else
	{
    
    
		memset(lcd_str,0,sizeof(lcd_str));
		snprintf((char*)lcd_str,20,"    PARA            ");
		LCD_DisplayStringLine(Line1,lcd_str);
		
		memset(lcd_str,0,sizeof(lcd_str));
		snprintf((char*)lcd_str,20,"    VD:LD%d          ",vd_temp + 1);
		LCD_DisplayStringLine(Line3,lcd_str);
		
		memset(lcd_str,0,sizeof(lcd_str));
		snprintf((char*)lcd_str,20,"    FD:LD%d          ",fd_temp + 1);
		LCD_DisplayStringLine(Line4,lcd_str);
		
		LCD_DisplayStringLine(Line5,(uint8_t *)"                    ");
		
		LCD_DisplayStringLine(Line6,(uint8_t *)"                    ");
	}
}

void adc_proc(void)
{
    
    
	v1 = adc_value[0] / 4095.0 * 3.3;
	v2 = adc_value[1] / 4095.0 * 3.3;
	// Á¬Ðøת»»ÐèÒªÅäÖÃcontinuousΪenable
	// endofsingleºÍendofsequence¶¼¿ÉÒÔ
	//HAL_ADC_Start_DMA(&hadc2,(uint32_t*)adc_value,2);
}

void pwm_proc(void)
{
    
    
	if(pwm_refresh_flag)
	{
    
    
		pwm_refresh_flag = 0;
		if(select == 0)
		{
    
    
			CCR3_Val = 1000000 / f1 / 2;
		}
		else
		{
    
    
			CCR3_Val = 1000000 / f2 / 2;
		}
	}
}

void key_scan(void)
{
    
    
	key_refresh();
	if(key_falling == B1)
	{
    
    
			led_init();
		if(interface == DATA)
		{
    
    
			interface = SETTING;
			select = 0;
		}
		else
		{
    
    
			interface = DATA;
			vd = vd_temp;
			fd = fd_temp;
		}
	}
	else if(key_falling == B2 && interface == SETTING)
	{
    
    
		vd_temp = (vd_temp + 1) % 8;
		if(vd_temp == fd_temp)
			vd_temp = (vd_temp + 1) % 8;
	}
	else if(key_falling == B3 && interface == SETTING)
	{
    
    
		fd_temp = (fd_temp + 1) % 8;
		if(fd_temp == vd_temp)
			fd_temp = (fd_temp + 1) % 8;
	}
	else if(key_falling == B4)
	{
    
    
		select = !select;
	}
}

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
    
    
	if(htim->Instance == TIM4)
	{
    
    
		if(++key_tick == 10)
		{
    
    
			key_tick = 0;
			key_scan();
		}
		if(++pwm_refresh_tick == 500)
		{
    
    
			pwm_refresh_tick = 0;
			pwm_refresh_flag = 1;
			f1 = TIM2_IC2_Freq;
			f2 = TIM2_IC3_Freq;
		}
	}
}

void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
    
    
	if(htim->Instance == TIM2)
	{
    
    
		if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
		{
    
    
			if(TIM2_IC2_CaptureNumber == 0)
			{
    
    
				/* Get the Input Capture value */
				TIM2_IC2_ReadValue1 = TIM2->CCR2;
				TIM2_IC2_CaptureNumber = 1;
			}
			else if(TIM2_IC2_CaptureNumber == 1)
			{
    
    
				/* Get the Input Capture value */
				TIM2_IC2_ReadValue2 = TIM2->CCR2;
				
				/* Capture computation */
				if (TIM2_IC2_ReadValue2 > TIM2_IC2_ReadValue1)
				{
    
    
					TIM2_IC2_Capture = (TIM2_IC2_ReadValue2 - TIM2_IC2_ReadValue1); 
				}
				else
				{
    
    
					TIM2_IC2_Capture = ((0xFFFFFFFF - TIM2_IC2_ReadValue1) + TIM2_IC2_ReadValue2); 
				}
				/* Frequency computation */ 
				TIM2_IC2_Freq = (uint32_t) 1000000 / TIM2_IC2_Capture;
				TIM2_IC2_CaptureNumber = 0;
			}
		}
		if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_3)
		{
    
    
			if(TIM2_IC3_CaptureNumber == 0)
			{
    
    
				/* Get the Input Capture value */
				TIM2_IC3_ReadValue1 = TIM2->CCR3;
				TIM2_IC3_CaptureNumber = 1;
			}
			else if(TIM2_IC3_CaptureNumber == 1)
			{
    
    
				/* Get the Input Capture value */
				TIM2_IC3_ReadValue2 = TIM2->CCR3;
				
				/* Capture computation */
				if (TIM2_IC3_ReadValue2 > TIM2_IC3_ReadValue1)
				{
    
    
					TIM2_IC3_Capture = (TIM2_IC3_ReadValue2 - TIM2_IC3_ReadValue1); 
				}
				else
				{
    
    
					TIM2_IC3_Capture = ((0xFFFFFFFF - TIM2_IC3_ReadValue1) + TIM2_IC3_ReadValue2); 
				}
				/* Frequency computation */ 
				TIM2_IC3_Freq = (uint32_t) 1000000 / TIM2_IC3_Capture;
				TIM2_IC3_CaptureNumber = 0;
			}
		}
	}
}

void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
{
    
    
	uint16_t capture = 0;
	if(htim->Instance == TIM3)
	{
    
    
		if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
		{
    
    
			capture = TIM3->CCR2;
			TIM3->CCR2 = capture + CCR3_Val;
		}
	}
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
    
    
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
    
    
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

四、细节说明

这一届的赛题很有可能会忽略一个小问题导致出现一个小bug,就是LED。题目要求只有相应的两个LED点亮,其他的LED都处于熄灭的状态,所以我们每一次进入LED设置界面的时候,就应该将所有的LED先关闭,避免设置完成了,上一次设置的LED灯还是亮着的情况。

五、完整代码下载

代码使用说明,一定要看

完整代码下载点我

猜你喜欢

转载自blog.csdn.net/qq_43715171/article/details/117024045