蓝桥杯嵌入式——第十二届蓝桥杯嵌入式国赛

蓝桥杯嵌入式——第十二届蓝桥杯嵌入式国赛

之前准备省赛的时候用的是旧版的STM32F103,从准备国赛开始就用新版STM32G431平台了,主要是想经过新版的准备学习一下HAL库以及CubeMX的使用。用了几天的新版,感觉新版的还是比较香,单纯从配置各个模块来说,比旧版的省太多时间了,而且速度也比较块,单纯从比赛来说,还是推荐新版,因为配置方便,调试器兼容KEIL5,KEI5比KEIL4好用太多了,也有自动补全,在写代码的时候速度也会比较快一些。不过旧版的资料确实比较多,选择也看大家。所以之后的国赛赛题都是用的新版,当前除了模块的配置外,其他的代码其实都是一样的,没多大区别,所以旧版也是可以参考我的代码。

一、赛题分析

刚刚比赛完,前两天刚出成绩。感觉这一届的难度还是挺大的,比前面的几届都要难一些。赛题更加着重逻辑考察,也考察了字符串的处理和一些小的算法。

  • 在逻辑方面体现在有一些参数并不是直接告诉的,而是需要我们进行一些简单的推导,如本届的吊绳和吊臂之间的角度,这里很多人看似简单,实际还要分情况进行讨论的,再比如说角度占空比的换算,赛题是给了一个角度和占空比关系的折线图,具体换算关系则需要我们自己进行推导。
  • 字符串的处理在这一次并没有多大的难度,使用strcmp即可,但是在省赛的时候,字符串的解析还是比较难的,相信有很多的人都是被搞自闭了的。
  • 小的算法在这一次的赛题体现在串口方面,要求我们按照采集时间先后顺序排列输出,相当于队列的先进先出。还有就是要求我们能够实现按照从小到大的顺序排列输出。这里就涉及到排序的知识了,数据量不大,使用冒泡排序或者选择排序都是可以的。
    要说赛题的难度有多大,其实也没有多大,发现都是一些基础的知识,比如说排序,这个在我们大一的C语言肯定是学过的吧。其他的比如说推导一些换算的关系,这个就是麻烦了一点,都是很简单的推导。 这些都是一些基础的知识,但是难的就是把这些知识全部集中到赛题上面,很容易出现错误,就要求我们要细致细致再细致,也有一些人,说自己功能全部都实现完了,但是最后的结果不令人满意,很大可能就是出现在细节的错误上面, 存在很多的BUG导致的。

在硬件的模块部分考察了LCD、LED、串口的不定长数据接收和发送,按键,定时器对方波频率的捕获,定时器捕获双通道的PWM的占空比,ADC等,其实老老实实准备了省赛,这些配置都是没有什么问题的。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、CubeMX模块配置

  1. LED和按键的GPIO配置
    由于直接使用的考场提供的实例程序,里面的LCD以及LED的GPIO都是配置好了的,我们只需要额外再配置一下LED的使能端口,也就是PD2。与开发板按键相对应的是PB0,PB1,PB2,PA0等。
    在这里插入图片描述

  2. 时钟配置
    这里我使用的外部晶振,将系统时钟配置成170MHz,也可以使用HSI,其他频率也是可以的。
    在这里插入图片描述在这里插入图片描述

  3. 定时器TIM4配置
    定时器在这里的作用就是产生1ms的中断,用于定时,用来扫描按键进行消抖,以及其他需要用到定时的模块。
    在这里插入图片描述
    还要记得打开定时器的中断,在这里插入图片描述

  4. 定时器TIM2,TIM3捕获的配置
    通过PA1捕获扩展板上的方波PULS1,对应的是TIM2的CH2,通过PA6和PA7来捕获扩展板上的PWM波,对应的是TIM3的CH1和CH2。
    在这里插入图片描述
    在这里插入图片描述
    最后不要完了打开定时器的全局中断
    在这里插入图片描述

  5. ADC的配置
    通过ADC来获取光敏电阻的值的大小,使用到的是PA4,对应ADC2_IN17。
    在这里插入图片描述

  6. 串口的配置
    基本设置,注意波特率为9600,这是试题指定的波特率。
    在这里插入图片描述
    我使用的是串口的IDLE+DMA来接收不定长数据,这样比较方便,当然也可以有其他的方法,可以看我之前写的博客,所以这里还需要开启一个DMA用于串口的接收。
    在这里插入图片描述
    然后还要记得要打开串口的总中断,由于我们在这里用不到DMA的中断,所以直接关闭DM的中断即可。
    在这里插入图片描述

三、部分程序分析

  1. 角度与占空比转换计算
    使用PWM1和PWM2模拟旋转角度传感器输出信号,输出信号占空比值与角度关系如下图所示:
    在这里插入图片描述
    根据关系图可以解得:
angle_a = TIM3_IC1_Duty * 100.0 * 2.25 - 22.5;
angle_b = TIM3_IC2_Duty * 100.0 * 1.125 - 11.5;
  1. 模式B,通过光敏电阻来触发角度数据更新
    经过的的测试如果手没有遮挡,大概读到的ADC的值为2000,如果手挡住光敏电阻大概读到的值是3000,所以这里可以取一个中间的值,当ADC的值大于2500表示有东西遮挡传感器。这个值会收到环境的影响,根据自己的测试修改即可。
    还需要注意的是,不要一直让ADC进行刷新,我推荐500ms刷新一次,其实就相当于按键消抖。
  2. 吊绳与吊臂之间的夹角
    这里其实应该分两种情况进行讨论,因为角度a的范围是0~180,所以要以吊臂的竖直为边界进行讨论。具体分析请看下图:
    在这里插入图片描述
    所以根据上面的推导,有以下的代码:
#define LED5_STATE 			(angle_a < 90 + angle_b) && 90 - angle_a + angle_b < 10 || (angle_a > 90 + angle_b) && angle_a - 90 - angle_b < 10
led_ctrl(LD5,LED5_STATE);
  1. 串口部分

void sendAngleOderByTime(float* sendBuffer)
{
    
    
    uint8_t index = 0,i,upper_limit = angle_cnt;
    if(angle_cnt_overflow)
    {
    
    
        index = angle_cnt;
        upper_limit = 5;
    }
    for(i = 0; i < upper_limit; i++)
    {
    
    
        if(i != upper_limit - 1)
            printf("%.1f-",sendBuffer[index]);
        else
            printf("%.1f",sendBuffer[index]);
        index = (index + 1) % 5;
    }
    printf("\r\n");
}

void sendAngleBySort(float *array1)
{
    
    
    float sendBuffer[20];
    uint8_t i = 0,j,upper_limit;
    for(i = 0; i < 5; i++)
        sendBuffer[i] = array1[i];
    if(angle_cnt_overflow)
        upper_limit = 5;
    else
        upper_limit = angle_cnt;
    for(i = upper_limit - 1; i > 0 && upper_limit; i--)
    {
    
    
        for(j = 0; j < i; j++)
        {
    
    
            if(sendBuffer[j] > sendBuffer[j + 1])
            {
    
    
                float temp;
                temp = sendBuffer[j];
                sendBuffer[j] = sendBuffer[j + 1];
                sendBuffer[j + 1] = temp;
            }
        }
    }
    for(i = 0; i < upper_limit; i++)
    {
    
    
        if(i != upper_limit - 1)
            printf("%.1f-",sendBuffer[i]);
        else
            printf("%.1f",sendBuffer[i]);
    }
    printf("\r\n");
}

void uart_proc(void)
{
    
    
    static _Bool firstRx = 1;
    if(RxFlag && firstRx)
    {
    
    
        firstRx = 0;
        RxFlag = 0;
        memset(RxBuffer,0, sizeof(RxBuffer));
        HAL_UART_DMAStop(&huart1);
        HAL_UART_Receive_DMA(&huart1,RxBuffer,100);
        return;
    }
    if(RxFlag)
    {
    
    
        RxFlag = 0;
        if(strcmp((const char *)RxBuffer,"a?") == 0)
        {
    
    
            printf("a:%.1f\r\n",angle_a);
        }
        else if(strcmp((const char *)RxBuffer,"b?") == 0)
        {
    
    
            printf("b:%.1f\r\n",angle_b);
        }
        else if(strcmp((const char *)RxBuffer,"aa?") == 0)
        {
    
    
            printf("aa:");
            sendAngleOderByTime(angle_a_buffer);
        }
        else if(strcmp((const char *)RxBuffer,"bb?") == 0)
        {
    
    
            printf("bb:");
            sendAngleOderByTime(angle_b_buffer);
        }
        else if(strcmp((const char *)RxBuffer,"qa?") == 0)
        {
    
    
            printf("qa:");
            sendAngleBySort(angle_a_buffer);
        }
        else if(strcmp((const char *)RxBuffer,"qb?") == 0)
        {
    
    
            printf("qb:");
            sendAngleBySort(angle_b_buffer);
        }
        else
        {
    
    
            printf("error\r\n");
        }

        memset(RxBuffer,0, sizeof(RxBuffer));
        HAL_UART_DMAStop(&huart1);
        HAL_UART_Receive_DMA(&huart1,RxBuffer,100);
    }
}

五、main.c程序

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "dma.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define     DATA       0
#define     PARA       1
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
__IO _Bool TRUE = 1;

uint32_t TIM2_IC2_Value1,TIM2_IC2_Value2;
uint32_t TIM2_IC2_Fre;
uint8_t TIM2_IC2_Number;


uint16_t TIM3_IC1_Value1,TIM3_IC1_Value2;
uint16_t TIM3_IC1_High,TIM3_IC1_Low;
float TIM3_IC1_Duty;
uint8_t TIM3_IC1_Number;


uint16_t TIM3_IC2_Value1,TIM3_IC2_Value2;
uint16_t TIM3_IC2_High,TIM3_IC2_Low;
float TIM3_IC2_Duty;
uint8_t TIM3_IC2_Number;

uint16_t adc_value = 0;
uint16_t adc_tick = 0;
_Bool adc_flag = 0;

uint8_t RxBuffer[100];
_Bool RxFlag = 0;

_Bool interface = DATA;

float angle_a = 0.0;
float  angle_b = 0.0;
uint8_t ax = 0;
uint8_t bx = 0;
uint8_t mode = 'A';

uint16_t Pf = 1000;
uint8_t Pax = 20;
uint8_t Pbx = 20;

uint16_t Pf_temp = 1000;
uint8_t Pax_temp = 20;
uint8_t Pbx_temp = 20;

_Bool angle_flag = 0;

float angle_a_buffer[5];
float angle_b_buffer[5];
uint8_t angle_cnt = 0;
_Bool angle_cnt_overflow = 0;
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
void key_proc(void);
void led_proc(void);
void adc_proc(void);
void lcd_proc(void);
void uart_proc(void);
void angle_proc(void);
void sendAngleBySort(float *array1);
void USER_UART_IdleCallback(UART_HandleTypeDef *huart);
void sendAngleOderByTime(float* sendBuffer);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
    
    
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_TIM4_Init();
  MX_USART1_UART_Init();
  MX_ADC2_Init();
  MX_TIM2_Init();
  MX_TIM3_Init();
  /* USER CODE BEGIN 2 */
	
  LCD_Init();
  led_init();
  HAL_TIM_Base_Start_IT(&htim4);
  HAL_TIM_IC_Start_IT(&htim2,TIM_CHANNEL_2);
  HAL_TIM_IC_Start_IT(&htim3,TIM_CHANNEL_1);
  HAL_TIM_IC_Start_IT(&htim3,TIM_CHANNEL_2);
  HAL_ADCEx_Calibration_Start(&hadc2,ADC_SINGLE_ENDED);
  HAL_ADC_Start(&hadc2);
  HAL_UART_Receive_DMA(&huart1,RxBuffer,100);
  __HAL_UART_ENABLE_IT(&huart1,UART_IT_IDLE);
  __HAL_UART_CLEAR_IDLEFLAG(&huart1);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */

  LCD_Clear(Black);
  LCD_SetBackColor(Black);
  LCD_SetTextColor(White);
            printf("error\r\n");
            printf("error\r\n");
            printf("error\r\n");
	
  while (TRUE)
  {
    
    
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    adc_proc();
    led_proc();
    lcd_proc();
    uart_proc();
    angle_proc();
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
    
    
  RCC_OscInitTypeDef RCC_OscInitStruct = {
    
    0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {
    
    0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {
    
    0};

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1_BOOST);
  /** Initializes the CPU, AHB and APB busses clocks
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV6;
  RCC_OscInitStruct.PLL.PLLN = 85;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB busses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_8) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  /** Initializes the peripherals clocks
  */
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_ADC12;
  PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
  PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    
    
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */
void angle_proc(void)
{
    
    
    static float angle_a_pre = 0.0;
    static float angle_b_pre = 0.0;
    if(angle_flag)
    {
    
    
        angle_flag = 0;
        if(TIM3_IC1_Duty < 0.1)
            angle_a = 0.0;
        else if(TIM3_IC1_Duty > 0.9)
            angle_a = 180.0;
        else
            angle_a = TIM3_IC1_Duty * 100.0 * 2.25 - 22.5;
        if(TIM3_IC2_Duty < 0.1)
            angle_b = 0.0;
        else if(TIM3_IC2_Duty > 0.9)
            angle_b = 90.0;
        else
            angle_b = TIM3_IC2_Duty * 100.0 * 1.125 - 11.5;
        angle_a_buffer[angle_cnt] = angle_a;
        angle_b_buffer[angle_cnt] = angle_b;
        if(angle_cnt_overflow == 0 && angle_cnt == 4)
        {
    
    
            angle_cnt_overflow = 1;
        }
        angle_cnt = (angle_cnt + 1) % 5;
        if(angle_a_pre > angle_a)
            ax = angle_a_pre - angle_a;
        else
            ax = angle_a - angle_a_pre;

        if(angle_b_pre > angle_b)
            bx = angle_b_pre - angle_b;
        else
            bx = angle_b - angle_b_pre;

        angle_a_pre = angle_a;
        angle_b_pre = angle_b;
    }
}

void sendAngleOderByTime(float* sendBuffer)
{
    
    
    uint8_t index = 0,i,upper_limit = angle_cnt;
    if(angle_cnt_overflow)
    {
    
    
        index = angle_cnt;
        upper_limit = 5;
    }
    for(i = 0; i < upper_limit; i++)
    {
    
    
        if(i != upper_limit - 1)
            printf("%.1f-",sendBuffer[index]);
        else
            printf("%.1f",sendBuffer[index]);
        index = (index + 1) % 5;
    }
    printf("\r\n");
}

void sendAngleBySort(float *array1)
{
    
    
    float sendBuffer[20];
    uint8_t i = 0,j,upper_limit;
    for(i = 0; i < 5; i++)
        sendBuffer[i] = array1[i];
    if(angle_cnt_overflow)
        upper_limit = 5;
    else
        upper_limit = angle_cnt;
    for(i = upper_limit - 1; i > 0 && upper_limit; i--)
    {
    
    
        for(j = 0; j < i; j++)
        {
    
    
            if(sendBuffer[j] > sendBuffer[j + 1])
            {
    
    
                float temp;
                temp = sendBuffer[j];
                sendBuffer[j] = sendBuffer[j + 1];
                sendBuffer[j + 1] = temp;
            }
        }
    }
    for(i = 0; i < upper_limit; i++)
    {
    
    
        if(i != upper_limit - 1)
            printf("%.1f-",sendBuffer[i]);
        else
            printf("%.1f",sendBuffer[i]);
    }
    printf("\r\n");
}

void uart_proc(void)
{
    
    
    static _Bool firstRx = 1;
    if(RxFlag && firstRx)
    {
    
    
        firstRx = 0;
        RxFlag = 0;
        memset(RxBuffer,0, sizeof(RxBuffer));
        HAL_UART_DMAStop(&huart1);
        HAL_UART_Receive_DMA(&huart1,RxBuffer,100);
        return;
    }
    if(RxFlag)
    {
    
    
        RxFlag = 0;
        if(strcmp((const char *)RxBuffer,"a?") == 0)
        {
    
    
            printf("a:%.1f\r\n",angle_a);
        }
        else if(strcmp((const char *)RxBuffer,"b?") == 0)
        {
    
    
            printf("b:%.1f\r\n",angle_b);
        }
        else if(strcmp((const char *)RxBuffer,"aa?") == 0)
        {
    
    
            printf("aa:");
            sendAngleOderByTime(angle_a_buffer);
        }
        else if(strcmp((const char *)RxBuffer,"bb?") == 0)
        {
    
    
            printf("bb:");
            sendAngleOderByTime(angle_b_buffer);
        }
        else if(strcmp((const char *)RxBuffer,"qa?") == 0)
        {
    
    
            printf("qa:");
            sendAngleBySort(angle_a_buffer);
        }
        else if(strcmp((const char *)RxBuffer,"qb?") == 0)
        {
    
    
            printf("qb:");
            sendAngleBySort(angle_b_buffer);
        }
        else
        {
    
    
            printf("error\r\n");
        }

        memset(RxBuffer,0, sizeof(RxBuffer));
        HAL_UART_DMAStop(&huart1);
        HAL_UART_Receive_DMA(&huart1,RxBuffer,100);
    }
}

#define LED5_STATE (angle_a < 90 + angle_b) && 90 - angle_a + angle_b < 10 || (angle_a > 90 + angle_b) && angle_a - 90 - angle_b < 10
void led_proc(void)
{
    
    
    led_ctrl(LD1,(ax > Pax));
    led_ctrl(LD2,(bx > Pbx));
    led_ctrl(LD3,(TIM2_IC2_Fre > Pf));
    led_ctrl(LD4,(mode == 'A'));
    led_ctrl(LD5,LED5_STATE);
}

void adc_proc(void)
{
    
    
    if(adc_flag && mode == 'B' && interface == DATA)
    {
    
    
        adc_flag = 0;
        HAL_ADC_Start(&hadc2);
        while(HAL_ADC_PollForConversion(&hadc2,0xFF) != HAL_OK);
        adc_value = HAL_ADC_GetValue(&hadc2);
        HAL_ADC_Stop(&hadc2);
        HAL_ADC_Start(&hadc2);
        HAL_ADC_PollForConversion(&hadc2,0xFF);
        if(adc_value > 2500)
            angle_flag = 1;
    }
}

void lcd_proc(void)
{
    
    
    uint8_t lcd_str[20];
    if(interface == DATA)
    {
    
    
        snprintf((char*)lcd_str,20,"        DATA        ");
        LCD_DisplayStringLine(Line1, lcd_str);
        snprintf((char*)lcd_str,20,"   a:%.1f           ",angle_a);
        LCD_DisplayStringLine(Line2, lcd_str);
        snprintf((char*)lcd_str,20,"   b:%.1f           ",angle_b);
        LCD_DisplayStringLine(Line3, lcd_str);
        snprintf((char*)lcd_str,20,"   f:%dHz          ",TIM2_IC2_Fre);
        LCD_DisplayStringLine(Line4, lcd_str);
        snprintf((char*)lcd_str,20,"   ax:%d            ",ax);
        LCD_DisplayStringLine(Line6, lcd_str);
        snprintf((char*)lcd_str,20,"   bx:%d            ",bx);
        LCD_DisplayStringLine(Line7, lcd_str);
        snprintf((char*)lcd_str,20,"   mode:%c          ",mode);
        LCD_DisplayStringLine(Line8, lcd_str);
    }
    else
    {
    
    
        snprintf((char*)lcd_str,20,"        PARA        ");
        LCD_DisplayStringLine(Line1, lcd_str);
        snprintf((char*)lcd_str,20,"   Pax:%d           ",Pax_temp);
        LCD_DisplayStringLine(Line2, lcd_str);
        snprintf((char*)lcd_str,20,"   Pbx:%d           ",Pbx_temp);
        LCD_DisplayStringLine(Line3, lcd_str);
        snprintf((char*)lcd_str,20,"   f:%d             ", Pf_temp );
        LCD_DisplayStringLine(Line4, lcd_str);
        snprintf((char*)lcd_str,20,"                    ");
        LCD_DisplayStringLine(Line6, lcd_str);
        snprintf((char*)lcd_str,20,"                    ");
        LCD_DisplayStringLine(Line7, lcd_str);
        snprintf((char*)lcd_str,20,"                    ");
        LCD_DisplayStringLine(Line8, lcd_str);
    }

}

void key_proc(void)
{
    
    
    key_refresh();
    if(key_falling == B1)
    {
    
    
        if(interface == DATA)
        {
    
    
            interface = PARA;
        } else
        {
    
    
            Pax = Pax_temp;
            Pbx = Pbx_temp;
            Pf = Pf_temp;
            interface = DATA;
        }
    }
    else if (key_falling == B2 && interface == PARA)
    {
    
    
        Pax_temp = Pax_temp % 60 + 10;
        Pbx_temp = Pbx_temp % 60 + 10;
    }
    else if (key_falling == B3)
    {
    
    
        if(interface == PARA)
            Pf_temp = Pf_temp % 10000 + 1000;
        else
        {
    
    
            if(mode == 'A')
                mode = 'B';
            else
                mode = 'A';
        }
    }
    else if (key_falling == B4 && interface == DATA && mode == 'A')
    {
    
    
        angle_flag = 1;
    }
}


void USER_UART_IdleCallback(UART_HandleTypeDef *huart)
{
    
    
    if(huart->Instance == USART1)
    {
    
    
        if(__HAL_UART_GET_FLAG(huart,UART_FLAG_IDLE))
        {
    
    
            RxFlag = 1;
            __HAL_UART_CLEAR_IDLEFLAG(huart);
        }
    }
}

void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
    
    
    if(htim->Instance == TIM2)
    {
    
    
        if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
        {
    
    
            if(TIM2_IC2_Number == 0)
            {
    
    
                TIM2_IC2_Value1 = __HAL_TIM_GET_COMPARE(htim,TIM_CHANNEL_2);
                TIM2_IC2_Number = 1;
            }
            else if(TIM2_IC2_Number == 1)
            {
    
    
                TIM2_IC2_Value2 = __HAL_TIM_GET_COMPARE(htim,TIM_CHANNEL_2);
                if(TIM2_IC2_Value1 > TIM2_IC2_Value2)
                    TIM2_IC2_Fre = 1000000 / ((0xFFFFFFFF - TIM2_IC2_Value1) + TIM2_IC2_Value2);
                else
                    TIM2_IC2_Fre = 1000000 / (TIM2_IC2_Value2 - TIM2_IC2_Value1);
                TIM2_IC2_Number = 0;
            }
        }
    }
    if(htim->Instance == TIM3)
    {
    
    
        if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1)
        {
    
    
            if(TIM3_IC1_Number == 0)
            {
    
    
                TIM3_IC1_Value1 = __HAL_TIM_GET_COMPARE(htim,TIM_CHANNEL_1);
                __HAL_TIM_SET_CAPTUREPOLARITY(htim,TIM_CHANNEL_1,TIM_INPUTCHANNELPOLARITY_FALLING);
                TIM3_IC1_Number = 1;
            }
            else if(TIM3_IC1_Number == 1)
            {
    
    
                TIM3_IC1_Value2 = __HAL_TIM_GET_COMPARE(htim,TIM_CHANNEL_1);
                __HAL_TIM_SET_CAPTUREPOLARITY(htim,TIM_CHANNEL_1,TIM_INPUTCHANNELPOLARITY_RISING);
                if(TIM3_IC1_Value1 > TIM3_IC1_Value2)
                    TIM3_IC1_High = (0xFFFF - TIM3_IC1_Value1) + TIM3_IC1_Value2;
                else
                    TIM3_IC1_High = TIM3_IC1_Value2 - TIM3_IC1_Value1;
                TIM3_IC1_Value1 = TIM3_IC1_Value2;
                TIM3_IC1_Number = 2;
            }
            else if(TIM3_IC1_Number == 2)
            {
    
    
                TIM3_IC1_Value2 = __HAL_TIM_GET_COMPARE(htim,TIM_CHANNEL_1);
                if(TIM3_IC1_Value1 > TIM3_IC1_Value2)
                    TIM3_IC1_Low = (0xFFFF - TIM3_IC1_Value1) + TIM3_IC1_Value2;
                else
                    TIM3_IC1_Low = TIM3_IC1_Value2 - TIM3_IC1_Value1;
                TIM3_IC1_Duty = TIM3_IC1_High * 1.0 / (TIM3_IC1_High + TIM3_IC1_Low);
                TIM3_IC1_Number = 0;
            }
        }
        if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
        {
    
    
            if(TIM3_IC2_Number == 0)
            {
    
    
                TIM3_IC2_Value1 = __HAL_TIM_GET_COMPARE(htim,TIM_CHANNEL_2);
                __HAL_TIM_SET_CAPTUREPOLARITY(htim,TIM_CHANNEL_2,TIM_INPUTCHANNELPOLARITY_FALLING);
                TIM3_IC2_Number = 1;
            }
            else if(TIM3_IC2_Number == 1)
            {
    
    
                TIM3_IC2_Value2 = __HAL_TIM_GET_COMPARE(htim,TIM_CHANNEL_2);
                __HAL_TIM_SET_CAPTUREPOLARITY(htim,TIM_CHANNEL_2,TIM_INPUTCHANNELPOLARITY_RISING);
                if(TIM3_IC2_Value1 > TIM3_IC2_Value2)
                    TIM3_IC2_High = (0xFFFF - TIM3_IC2_Value1) + TIM3_IC2_Value2;
                else
                    TIM3_IC2_High = TIM3_IC2_Value2 - TIM3_IC2_Value1;
                TIM3_IC2_Value1 = TIM3_IC2_Value2;
                TIM3_IC2_Number = 2;
            }
            else if(TIM3_IC2_Number == 2)
            {
    
    
                TIM3_IC2_Value2 = __HAL_TIM_GET_COMPARE(htim,TIM_CHANNEL_2);
                if(TIM3_IC2_Value1 > TIM3_IC2_Value2)
                    TIM3_IC2_Low = (0xFFFF - TIM3_IC2_Value1) + TIM3_IC2_Value2;
                else
                    TIM3_IC2_Low = TIM3_IC2_Value2 - TIM3_IC2_Value1;
                TIM3_IC2_Duty = TIM3_IC2_High * 1.0 / (TIM3_IC2_High + TIM3_IC2_Low);
                TIM3_IC2_Number = 0;
            }
        }
    }
}

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
    
    
    static  uint16_t key_tick = 0;
    if(htim->Instance == TIM4)
    {
    
    
        if(++key_tick == 10)
        {
    
    
            key_tick = 0;
            key_proc();
        }
        if(++adc_tick == 500)
        {
    
    
            adc_tick = 0;
            adc_flag = 1;
        }
    }
}

int fputc(int ch,FILE* f)
{
    
    
	HAL_UART_Transmit(&huart1,(uint8_t*)&ch,1,0xFF);
	return ch;
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
    
    
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
    
    
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

六、完整代码下载

代码使用说明,一定要看

完整代码下载点我

猜你喜欢

转载自blog.csdn.net/qq_43715171/article/details/117767150