MobileNet原理学习

MobileNet V1

Depthwise separable convolution(深度可分离卷积)

MobileNet的基本单元是深度可分离卷积(depthwise separable convolution),其可以分解为两个更小的操作:depthwise convolutionpointwise convolution

  • depthwise convolution和标准卷积不同,对于标准卷积其卷积核是用在所有的输入通道上(input channels),而depthwise convolution针对每个输入通道采用不同的卷积核,就是说一个卷积核对应一个输入通道,所以说depthwise convolution是depth级别的操作。
  • pointwise convolution其实就是普通的卷积,只不过其采用1x1的卷积核
    在这里插入图片描述
    在这里插入图片描述
    前面讲述了depthwise separable convolution,这是MobileNet的基本组件,但是在真正应用中会加入batchnorm,并使用ReLU激活函数,所以depthwise separable convolution的基本结构如图所示。
    在这里插入图片描述
    在这里插入图片描述
    MobileNetV1遗留的问题
  1. 结构问题:MobileNet V1 的结构其实非常简单,论文里是一个非常复古的直筒结构,**类似于VGG一样。**这种结构的性价比其实不高,后续一系列的 ResNet, DenseNet 等结构已经证明通过复用图像特征,使用 Concat/Eltwise+ 等操作进行融合,能极大提升网络的性价比。
  2. Depthwise Convolution的潜在问题:Depthwise Conv确实是大大降低了计算量,而且N×N Depthwise +1×1PointWise的结构在性能上也能接近N×N Conv。在实际使用的时候,我们发现Depthwise部分的kernel比较容易训废掉:训练完之后发现Depthwise训出来的kernel有不少是空的。当时我们认为,Depthwise每个kernel dim相对于普通Conv要小得多,过小的kernel_dim, 加上ReLU的激活影响下,使得神经元输出很容易变为0,所以就学废了。ReLU对于0的输出的梯度为0,所以一旦陷入0输出,就没法恢复了。我们还发现,这个问题在定点化低精度训练的时候会进一步放大。

MobileNet V2

创新点

  1. 倒残差结构(Inverted Residual Block):

    先用1x1降通道过ReLU,再3x3空间卷积过ReLU,再用1x1卷积过ReLU恢复通道,并和输入相加。之所以要1x1卷积降通道,是为了减少计算量,不然中间的3x3空间卷积计算量太大。所以Residual block是沙漏形,两边宽中间窄。

    但是,现在我们中间的3x3卷积变为了Depthwise的了,计算量很少了,所以通道可以多一点,效果更好,所以通过1x1卷积先提升通道数,再Depthwise的3x3空间卷积,再用1x1卷积降低维度。两端的通道数都很小,所以1x1卷积升通道或降通道计算量都并不大,而中间通道数虽然多,但是Depthwise 的卷积计算量也不大。作者称之为Inverted Residual Block,两边窄中间宽,像柳叶,较小的计算量得到较好的性能。

  2. Relu6激活函数

    MobileNet V1 里面使用 ReLU6,ReLU6 就是普通的ReLU但是限制最大输出值为 6,这是为了在移动端设备 float16/int8 的低精度的时候,也能有很好的数值分辨率。MobileNet V2最后输出的 ReLU6 去掉,直接线性输出,理由是:ReLU 变换后保留非0区域对应于一个线性变换,仅当输入低维时ReLU 能保留所有完整信息。
    在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/weixin_43742062/article/details/117189742
今日推荐