ConcurrentHashMap1.8 源码分析

一、容器初始化

在jdk8的ConcurrentHashMap中一共有5个构造方法,这四个构造方法中都没有对内部的数组做初始化, 只是对一些变量的初始值做了处理

jdk8的ConcurrentHashMap的数组初始化是在第一次添加元素时完成

//没有维护任何变量的操作,如果调用该方法,数组长度默认是16
public ConcurrentHashMap() {
    
    
}
//传递进来一个初始容量,ConcurrentHashMap会基于这个值计算一个比这个值大的2的幂次方数作为初始容量
public ConcurrentHashMap(int initialCapacity) {
    
    
    if (initialCapacity < 0)
        throw new IllegalArgumentException();
    int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
               MAXIMUM_CAPACITY :
               tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
    this.sizeCtl = cap;
}

注意,调用这个方法,得到的初始容量和我们之前讲的HashMap以及jdk7的ConcurrentHashMap不同,即使你传递的是一个2的幂次方数,该方法计算出来的初始容量依然是比这个值大的2的幂次方数

//调用四个参数的构造
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
    
    
    this(initialCapacity, loadFactor, 1);
}
//计算一个大于或者等于给定的容量值,该值是2的幂次方数作为初始容量
public ConcurrentHashMap(int initialCapacity,
                         float loadFactor, int concurrencyLevel) {
    
    
    if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
        throw new IllegalArgumentException();
    if (initialCapacity < concurrencyLevel)   // Use at least as many bins
        initialCapacity = concurrencyLevel;   // as estimated threads
    long size = (long)(1.0 + (long)initialCapacity / loadFactor);
    int cap = (size >= (long)MAXIMUM_CAPACITY) ?
        MAXIMUM_CAPACITY : tableSizeFor((int)size);
    this.sizeCtl = cap;
}
//基于一个Map集合,构建一个ConcurrentHashMap
//初始容量为16
public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
    
    
    this.sizeCtl = DEFAULT_CAPACITY;
    putAll(m);
}

sizeCtl含义解释

注意:以上这些构造方法中,都涉及到一个变量sizeCtl,这个变量是一个非常重要的变量,而且具有非常丰富的含义,它的值不同,对应的含义也不一样,这里我们先对这个变量不同的值的含义做一下说明,后续源码分析过程中,进一步解释

sizeCtl为0,代表数组未初始化, 且数组的初始容量为16

sizeCtl为正数,如果数组未初始化,那么其记录的是数组的初始容量,如果数组已经初始化,那么其记录的是数组的扩容阈值

sizeCtl为-1,表示数组正在进行初始化

sizeCtl小于0,并且不是-1,表示数组正在扩容, -(1+n),表示此时有n个线程正在共同完成数组的扩容操作

二、添加元素

1、添加元素put/putVal方法

public V put(K key, V value) {
    
    
    return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
    
    
    //如果有空值或者空键,直接抛异常
    if (key == null || value == null) throw new NullPointerException();
    //基于key计算hash值,并进行一定的扰动
    int hash = spread(key.hashCode());
    //记录某个桶上元素的个数,如果超过8个,会转成红黑树
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
    
    
        Node<K,V> f; int n, i, fh;
        //1、如果数组还未初始化,先对数组进行初始化
        if (tab == null || (n = tab.length) == 0)
               
            tab = initTable();   //初始化操作!
        
	    
        //2、如果hash计算得到的桶位置没有元素,利用cas将元素添加
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
    
    
            //cas+自旋(和外侧的for构成自旋循环),保证元素添加安全
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        
        //3、如果hash计算得到的桶位置元素的hash值为MOVED,证明正在扩容,那么协助扩容
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        
        //4 、 //hash计算的桶位置元素不为空,且当前没有处于扩容操作,进行元素添加
        else {
    
    
            V oldVal = null;
            //对当前桶进行加锁,保证线程安全,执行元素添加操作
            				//普通链表 : 尾插法
            				//树化后 : 插入树节点
            
            synchronized (f) {
    
    				//加锁 为节点头元素添加重量级锁,如果触发hash冲突,引发线程同步机制)!
                if (tabAt(tab, i) == f) {
    
    
                    //普通链表节点
                    if (fh >= 0) {
    
    
                        binCount = 1;
                        for (Node<K,V> e = f;; ++binCount) {
    
    	
                            			//拿到锁后对每个节点equals
                            K ek;
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
    
    
                                oldVal = e.val;			//存在相等覆盖
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node<K,V> pred = e;		//不存在就尾插
                            if ((e = e.next) == null) {
    
    
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    //树节点,将元素添加到红黑树中
                    else if (f instanceof TreeBin) {
    
    
                        Node<K,V> p;
                        binCount = 2;
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                       value)) != null) {
    
    
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            if (binCount != 0) {
    
    
                //链表长度大于/等于8,将链表转成红黑树(这个8设计到泊松分布)
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);   //尝试树化,因为树化还有满足数组长度 >  64 !
                //如果是重复键,直接将旧值返回
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    //添加的是新元素,维护集合长度,并判断是否要进行扩容操作
    addCount(1L, binCount);    //链表长度加1
    return null;
}

通过以上源码,我们可以看到,当需要添加元素时,会针对当前元素所对应的桶位进行加锁操作,这样一方面保证元素添加时,多线程的安全,同时对某个桶位加锁不会影响其他桶位的操作,进一步提升多线程的并发效率

2、数组初始化,initTable方法

private final Node<K,V>[] initTable() {
    
    
    Node<K,V>[] tab; int sc;
    //cas+自旋,保证线程安全,对数组进行初始化操作
    while ((tab = table) == null || tab.length == 0) {
    
    
        //如果sizeCtl的值(-1)小于0,说明此时正在初始化, 让出cpu
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
        //cas修改sizeCtl的值为-1,修改成功,进行数组初始化,失败,继续自旋
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
    
    
            try {
    
    
                if ((tab = table) == null || tab.length == 0) {
    
    
                    //sizeCtl为0,取默认长度16,否则去sizeCtl的值
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    //基于初始长度,构建数组对象
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    //计算扩容阈值,并赋值给sc
                    sc = n - (n >>> 2);    // sc = n - n/4 = 0.75n ;
                }
            } finally {
    
    
                //将扩容阈值,赋值给sizeCtl
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

3、Put加锁图解


梳理一下上述流程:

初始化:执行构造的时候是否传入参数,

  • 没有传参数:初始化容量为16,sizeCtl = 0 ;
  • 如果传入capacity : 数组table的则初始化容量为tableSize(capacity + capacity >>> 1 + 1)的结果,然后会将结果赋值给sizeCtl

接下来容器创造好后,当我们想容器添加<k,v>的时候

  • 如果此时数组为空且长度为0,调用initTable方法,为数组初始化 (第一次都是为空,因为是懒汉模式)!
  • 如果数组不为空,通过扰动函数确定桶位,判断桶位是否位空
    • 如果位空直接cas + 自旋添加
    • 如果不为空,判断当前是链表还是红黑树(注意:此处是通过synchronized为每个桶的第一个元素加锁,实现安全 + 并发)!
      • 如果是链表就逐个个euqals比较,如果存在相等就覆盖,不等就尾插法插入链表末尾!
      • 如果是红黑树就按树的插入方式

初始化并且插入的流程完成

三、计数操作

做一些赘述,方便理解

参考:https://blog.csdn.net/u011392897/article/details/60479937

1.7及以前的ConcurrentHashMap中使用了Segment,Segment能够分担所有的针对单个K-V的写操作,包括put/replace。并且Segment自带一些数据,比如Segment.count,用于处理Map的计数要求,这样就可以像put/repalce一样,分担整个Map的并发计数压力。但是1.8中没有再使用Segment来完成put/replace,虽然还是利用了锁分段的思想,但是使用的是自带的synchronized锁住hash桶中的第一个节点,没有新增别的数据。因此计数操作,被落下来了,它无法享受synchronized实现的变种分段锁带来的高效率,单独使用一个Map.size来计数,线程竞争可能会很大,比使用Segment是效率低很多

为了处理这个问题,jdk1.8中使用了一个仿造LongAdder实现的计数器,让计数操作额外使用别的基于分段并发思想的实现的类。。ConcurrentHashMap中不直接使用LongAdder,而是自己拷贝代码实现一个内部的,主要为了方便。LongAdder的实现本身代码不是特别多,ConcurrentHashMap中的实现,基本和LongAdder一样,可以直接看做是LongAdder。


参考:https://sylvanassun.github.io/2018/03/16/2018-03-16-map_family/

  • 在Java 7中ConcurrentHashMap对每个Segment单独计数,想要得到总数就需要获得所有Segment的锁,然后进行统计。由于Java 8抛弃了Segment,显然是不能再这样做了,而且这种方法虽然简单准确但也舍弃了性能
  • Java 8声明了一个volatile变量baseCount(可以看作LongAdder计数器)用于记录元素的个数,对这个变量的修改操作是基于CAS的,每当插入元素或删除元素时都会调用addCount()函数进行计数。加不进去就加数组上,保证每个线程添加元素都能统计上,最后把加上的和没加上的汇总

1、addCount方法

  1. 记录ConcurrentHashMap元素数量,会调用fullAddCount具体执行
  2. 扩容ConcurrentHashMap ,会调用transer方法具体执行扩容
private final void addCount(long x, int check) {
    
    
    CounterCell[] as; long b, s;
    //当CounterCell数组不为空,则优先利用数组中的CounterCell记录数量
    //或者当baseCount的累加操作失败,会利用数组中的CounterCell记录数量
    if ((as = counterCells) != null || !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
    
    
        CounterCell a; long v; int m;
        //标识是否有多线程竞争
        boolean uncontended = true;
        //当as数组为空
        //或者当as长度为0
        //或者当前线程对应的as数组桶位的元素为空
        //或者当前线程对应的as数组桶位不为空,但是累加失败
        if (as == null || (m = as.length - 1) < 0 ||
            (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
            !(uncontended =
              U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
    
    
            //以上任何一种情况成立,都会进入该方法,传入的uncontended是false
            fullAddCount(x, uncontended);
            return;
        }
        if (check <= 1)
            return;
        //计算元素个数
        s = sumCount();  //我们在这里得到元素的个数
    }
    
    
    //接着判断是否需要扩容
    if (check >= 0) {
    
    
        Node<K,V>[] tab, nt; int n, sc;
        //当元素个数达到扩容阈值
        //并且数组不为空
        //并且数组长度小于限定的最大值
        //满足以上所有条件,执行扩容
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
               (n = tab.length) < MAXIMUM_CAPACITY) {
    
    
            //这个是一个很大的正数
            int rs = resizeStamp(n);
            //sc小于0,说明有线程正在扩容,那么会协助扩容
            if (sc < 0) {
    
    
                //扩容结束或者扩容线程数达到最大值或者扩容后的数组为null或者没有更多的桶位需要转移,结束操作
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                //扩容线程加1,成功后,进行协助扩容操作
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    //协助扩容,newTable不为null
                    transfer(tab, nt);
            }
            //没有其他线程在进行扩容,达到扩容阈值后,给sizeCtl赋了一个很大的负数
            //1+1=2 --》 代表此时有一个线程在扩容
            
            //rs << RESIZE_STAMP_SHIFT)是一个很大的负数
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                //扩容,newTable为null
                transfer(tab, null);
            s = sumCount();
        }
    }
}

2、fullAddCount方法

需要添加的个数分别累加到baseCount 上、或者累加到其他CountCell数组中的每个对象中的value属性上

private final void fullAddCount(long x, boolean wasUncontended) {
    
    
    int h;
   
    if ((h = ThreadLocalRandom.getProbe()) == 0) {
    
      //获取当前线程的hash值(就是确定加到具体哪一个累加单元!)
        ThreadLocalRandom.localInit();     
        h = ThreadLocalRandom.getProbe();
        wasUncontended = true;
    }
    
 //注意:我们的辅助数组CountCell中保存的是CountCell对象,而我们value是这个对象的有一个属性,所以找到位置,还需要判断是否需要创建对象,如果需要就创建,如果不需要就直接在其value属性的基础上进行添加!
    
    //标识是否有冲突,如果最后一个桶不是null,那么为true
    boolean collide = false;                // True if last slot nonempty
    for (;;) {
    
    
        CounterCell[] as; CounterCell a; int n; long v;
        //数组不为空,优先对数组中CouterCell的value累加
        if ((as = counterCells) != null && (n = as.length) > 0) {
    
    
            //线程对应的桶位为null
            if ((a = as[(n - 1) & h]) == null) {
    
    
                if (cellsBusy == 0) {
    
                // Try to attach new Cell
                    //创建CounterCell对象
                    CounterCell r = new CounterCell(x); // Optimistic create
                    //利用CAS修改cellBusy状态为1,成功则将刚才创建的CounterCell对象放入数组中
                    if (cellsBusy == 0 &&
                        U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
    
    
                        boolean created = false;
                        try {
    
                   // Recheck under lock
                            CounterCell[] rs; int m, j;
                            //桶位为空, 将CounterCell对象放入数组
                            if ((rs = counterCells) != null &&
                                (m = rs.length) > 0 &&
                                rs[j = (m - 1) & h] == null) {
    
    
                                rs[j] = r;
                                //表示放入成功
                                created = true;
                            }
                        } finally {
    
    
                            cellsBusy = 0;
                        }
                        if (created) //成功退出循环
                            break;
                        //桶位已经被别的线程放置了已给CounterCell对象,继续循环
                        continue;           // Slot is now non-empty
                    }
                }
                collide = false;
            }
            //桶位不为空,重新计算线程hash值,然后继续循环
            else if (!wasUncontended)       // CAS already known to fail
                wasUncontended = true;      // Continue after rehash
            //重新计算了hash值后,对应的桶位依然不为空,对value累加
            //成功则结束循环
            //失败则继续下面判断
            else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
                break;
            //数组被别的线程改变了,或者数组长度超过了可用cpu大小,重新计算线程hash值,否则继续下一个判断
            else if (counterCells != as || n >= NCPU)
                collide = false;            // At max size or stale
            //当没有冲突,修改为有冲突,并重新计算线程hash,继续循环
            else if (!collide)
                collide = true;
            //如果CounterCell的数组长度没有超过cpu核数,对数组进行两倍扩容
            //并继续循环
            else if (cellsBusy == 0 &&
                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
    
    
                try {
    
    
                    if (counterCells == as) {
    
    // Expand table unless stale
                        CounterCell[] rs = new CounterCell[n << 1];
                        for (int i = 0; i < n; ++i)
                            rs[i] = as[i];
                        counterCells = rs;
                    }
                } finally {
    
    
                    cellsBusy = 0;
                }
                collide = false;
                continue;                   // Retry with expanded table
            }
            h = ThreadLocalRandom.advanceProbe(h);
        }
        //CounterCell数组为空,并且没有线程在创建数组,修改标记,并创建数组
        else if (cellsBusy == 0 && counterCells == as &&
                 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
    
    
            boolean init = false;
            try {
    
                               // Initialize table
                if (counterCells == as) {
    
    
                    CounterCell[] rs = new CounterCell[2];
                    rs[h & 1] = new CounterCell(x);
                    counterCells = rs;
                    init = true;
                }
            } finally {
    
    
                cellsBusy = 0;
            }
            if (init)
                break;
        }
        //数组为空,并且有别的线程在创建数组,那么尝试对baseCount做累加,成功就退出循环,失败就继续循环
        else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
            break;                          // Fall back on using base
    }
}

3、sumCount方法

最后会调用这个方法会中所有累加单元和baseCount的值!

final long sumCount() {
    
    
    CounterCell[] as = counterCells; CounterCell a;
    //获取baseCount的值
    long sum = baseCount;
    if (as != null) {
    
    
        //遍历CounterCell数组,累加每一个CounterCell的value值
        for (int i = 0; i < as.length; ++i) {
    
    
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum;
}

4、size方法

返回的是我们统计好的sum值

public int size() {
    
    
    long n = sumCount();
    return ((n < 0L) ? 0 :
            (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
            (int)n);
}

其实size()函数返回的总数可能并不是百分百精确的,试想如果前一个遍历过的CounterCell又进行了更新会怎么样?尽管只是一个估算值,但在大多数场景下都还能接受,而且性能上是要比Java 7好上太多了。

四、扩容

ConcurrentHashMap触发扩容的时机与HashMap类似,要么是在将链表转换成红黑树时判断table数组的长度是否小于阈值(64),如果小于就进行扩容而不是树化,要么就是在添加元素的时候,判断当前Entry数量是否超过阈值,如果超过就进行扩容。

1、普通扩容机制

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    
    
    int n = tab.length, stride;
    //如果是多cpu,那么每个线程划分任务,最小任务量是16个桶位的迁移
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
    //如果是扩容线程,此时新数组为null
    if (nextTab == null) {
    
                // initiating
        try {
    
    
            @SuppressWarnings("unchecked")
            //两倍扩容创建新数组
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {
    
          // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        nextTable = nextTab;
        //记录线程开始迁移的桶位,从后往前迁移
        transferIndex = n;
    }
    //记录新数组的末尾
    int nextn = nextTab.length;
    //已经迁移的桶位,会用这个节点占位(这个节点的hash值为-1--MOVED)
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    boolean advance = true;
    boolean finishing = false; // to ensure sweep before committing nextTab
    for (int i = 0, bound = 0;;) {
    
    
        Node<K,V> f; int fh;
        while (advance) {
    
    
            int nextIndex, nextBound;
            //i记录当前正在迁移桶位的索引值
            //bound记录下一次任务迁移的开始桶位
            
            //--i >= bound 成立表示当前线程分配的迁移任务还没有完成
            if (--i >= bound || finishing)
                advance = false;
            //没有元素需要迁移 -- 后续会去将扩容线程数减1,并判断扩容是否完成
            else if ((nextIndex = transferIndex) <= 0) {
    
    
                i = -1;
                advance = false;
            }
            //计算下一次任务迁移的开始桶位,并将这个值赋值给transferIndex
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
    
    
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        //如果没有更多的需要迁移的桶位,就进入该if
        if (i < 0 || i >= n || i + n >= nextn) {
    
    
            int sc;
            //扩容结束后,保存新数组,并重新计算扩容阈值,赋值给sizeCtl
            if (finishing) {
    
    
                nextTable = null;
                table = nextTab;
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
		   //扩容任务线程数减1
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
    
    
                //判断当前所有扩容任务线程是否都执行完成
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    return;
                //所有扩容线程都执行完,标识结束
                finishing = advance = true;
                i = n; // recheck before commit
            }
        }
        //当前迁移的桶位没有元素,直接在该位置添加一个fwd节点
        else if ((f = tabAt(tab, i)) == null)
            advance = casTabAt(tab, i, null, fwd);
        //当前节点已经被迁移
        else if ((fh = f.hash) == MOVED)
            advance = true; // already processed
        else {
    
    
            //当前节点需要迁移,加锁迁移,保证多线程安全
            //此处迁移逻辑和jdk7的ConcurrentHashMap相同,不再赘述
            synchronized (f) {
    
    
                if (tabAt(tab, i) == f) {
    
    
                    Node<K,V> ln, hn;
                    if (fh >= 0) {
    
    
                        int runBit = fh & n;
                        Node<K,V> lastRun = f;
                        for (Node<K,V> p = f.next; p != null; p = p.next) {
    
    
                            int b = p.hash & n;
                            if (b != runBit) {
    
    
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        if (runBit == 0) {
    
    
                            ln = lastRun;
                            hn = null;
                        }
                        else {
    
    
                            hn = lastRun;
                            ln = null;
                        }
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
    
    
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                    else if (f instanceof TreeBin) {
    
    
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> lo = null, loTail = null;
                        TreeNode<K,V> hi = null, hiTail = null;
                        int lc = 0, hc = 0;
                        for (Node<K,V> e = t.first; e != null; e = e.next) {
    
    
                            int h = e.hash;
                            TreeNode<K,V> p = new TreeNode<K,V>
                                (h, e.key, e.val, null, null);
                            if ((h & n) == 0) {
    
    
                                if ((p.prev = loTail) == null)
                                    lo = p;
                                else
                                    loTail.next = p;
                                loTail = p;
                                ++lc;
                            }
                            else {
    
    
                                if ((p.prev = hiTail) == null)
                                    hi = p;
                                else
                                    hiTail.next = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                            (hc != 0) ? new TreeBin<K,V>(lo) : t;
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                            (lc != 0) ? new TreeBin<K,V>(hi) : t;
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                }
            }
        }
    }
}

图解

2、多线程协助扩容

多线程协助扩容的操作会在两个地方被触发:

① 当添加元素时,发现添加的元素对用的桶位为fwd节点,就会先去协助扩容,然后再添加元素

② 当添加完元素后,判断当前元素个数达到了扩容阈值,此时发现sizeCtl的值小于0,并且新数组不为空,这个时候,会去协助扩容

1.1、元素未添加,先协助扩容,扩容完后再添加元素

final V putVal(K key, V value, boolean onlyIfAbsent) {
    
    
    if (key == null || value == null) throw new NullPointerException();
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
    
    
        Node<K,V> f; int n, i, fh;
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
    
    
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        //发现此处为fwd节点,协助扩容,扩容结束后,再循环回来添加元素
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        
        //省略代码
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
    
    
    Node<K,V>[] nextTab; int sc;
    if (tab != null && (f instanceof ForwardingNode) &&
        (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
    
    
        int rs = resizeStamp(tab.length);
        while (nextTab == nextTable && table == tab &&
               (sc = sizeCtl) < 0) {
    
    
            if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                sc == rs + MAX_RESIZERS || transferIndex <= 0)
                break;
            if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
    
    
                //扩容,传递一个不是null的nextTab
                transfer(tab, nextTab);
                break;
            }
        }
        return nextTab;
    }
    return table;
}

1.2、先添加元素,再协助扩容

private final void addCount(long x, int check) {
    
    
    //省略代码
    
    if (check >= 0) {
    
    
        Node<K,V>[] tab, nt; int n, sc;
  	    //元素个数达到扩容阈值
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
               (n = tab.length) < MAXIMUM_CAPACITY) {
    
    
            int rs = resizeStamp(n);
            //sizeCtl小于0,说明正在执行扩容,那么协助扩容
            if (sc < 0) {
    
    
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
            s = sumCount();
        }
    }
}

注意:扩容的代码都在transfer方法中,这里不再赘述

图解多线程扩容机制

               TreeNode<K,V> lo = null, loTail = null;
                    TreeNode<K,V> hi = null, hiTail = null;
                    int lc = 0, hc = 0;
                    for (Node<K,V> e = t.first; e != null; e = e.next) {
                        int h = e.hash;
                        TreeNode<K,V> p = new TreeNode<K,V>
                            (h, e.key, e.val, null, null);
                        if ((h & n) == 0) {
                            if ((p.prev = loTail) == null)
                                lo = p;
                            else
                                loTail.next = p;
                            loTail = p;
                            ++lc;
                        }
                        else {
                            if ((p.prev = hiTail) == null)
                                hi = p;
                            else
                                hiTail.next = p;
                            hiTail = p;
                            ++hc;
                        }
                    }
                    ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                        (hc != 0) ? new TreeBin<K,V>(lo) : t;
                    hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                        (lc != 0) ? new TreeBin<K,V>(hi) : t;
                    setTabAt(nextTab, i, ln);
                    setTabAt(nextTab, i + n, hn);
                    setTabAt(tab, i, fwd);
                    advance = true;
                }
            }
        }
    }
}

}


**图解**

<img src="JUC并发编程.assets/image-20211024150440847.png" alt="image-20211024150440847" style="zoom:80%;" />



##### 2、多线程协助扩容

多线程协助扩容的操作会在两个地方被触发:

① 当添加元素时,发现添加的元素对用的桶位为fwd节点,就会先去协助扩容,然后再添加元素

② 当添加完元素后,判断当前元素个数达到了扩容阈值,此时发现sizeCtl的值小于0,并且新数组不为空,这个时候,会去协助扩容

**1.1、元素未添加,先协助扩容,扩容完后再添加元素**

```java
final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        //发现此处为fwd节点,协助扩容,扩容结束后,再循环回来添加元素
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        
        //省略代码
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
    
    
    Node<K,V>[] nextTab; int sc;
    if (tab != null && (f instanceof ForwardingNode) &&
        (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
    
    
        int rs = resizeStamp(tab.length);
        while (nextTab == nextTable && table == tab &&
               (sc = sizeCtl) < 0) {
    
    
            if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                sc == rs + MAX_RESIZERS || transferIndex <= 0)
                break;
            if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
    
    
                //扩容,传递一个不是null的nextTab
                transfer(tab, nextTab);
                break;
            }
        }
        return nextTab;
    }
    return table;
}

1.2、先添加元素,再协助扩容

private final void addCount(long x, int check) {
    
    
    //省略代码
    
    if (check >= 0) {
    
    
        Node<K,V>[] tab, nt; int n, sc;
  	    //元素个数达到扩容阈值
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
               (n = tab.length) < MAXIMUM_CAPACITY) {
    
    
            int rs = resizeStamp(n);
            //sizeCtl小于0,说明正在执行扩容,那么协助扩容
            if (sc < 0) {
    
    
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
            s = sumCount();
        }
    }
}

注意:扩容的代码都在transfer方法中,这里不再赘述

图解多线程扩容机制
在这里插入图片描述
好文推荐 : https://sylvanassun.github.io/2018/03/16/2018-03-16-map_family/

猜你喜欢

转载自blog.csdn.net/m0_46571920/article/details/120934481