01-IO模型精讲

IO模型

IO模型就是说用什么样的通道进行数据的发送和接收,Java共支持3种网络编程IO模式:BIO,NIO,AIO

BIO(Blocking IO)

同步阻塞模型,一个客户端连接对应一个处理线程

BIO代码示例:

服务端代码

package com.tuling.bio;

import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;

public class SocketServer {
    public static void main(String[] args) throws IOException {
        ServerSocket serverSocket = new ServerSocket(9000);
        while (true) {
            System.out.println("等待连接。。");
            //阻塞方法
            Socket socket = serverSocket.accept();
            System.out.println("有客户端连接了。。");
            new Thread(new Runnable() {
                @Override
                public void run() {
                    try {
                        handler(socket);
                    } catch (IOException e) {
                        e.printStackTrace();
                    }
                }
            }).start();
            //handler(socket);

        }
    }

    private static void handler(Socket socket) throws IOException {
        System.out.println("thread id = " + Thread.currentThread().getId());
        byte[] bytes = new byte[1024];

        System.out.println("准备read。。");
        //接收客户端的数据,阻塞方法,没有数据可读时就阻塞
        int read = socket.getInputStream().read(bytes);
        System.out.println("read完毕。。");
        if (read != -1) {
            System.out.println("接收到客户端的数据:" + new String(bytes, 0, read));
            System.out.println("thread id = " + Thread.currentThread().getId());

        }
        socket.getOutputStream().write("HelloClient".getBytes());
        socket.getOutputStream().flush();
    }
}

客户端代码 

package com.tuling.bio;

import java.io.IOException;
import java.net.Socket;

public class SocketClient {

    public static void main(String[] args) throws IOException {
        Socket socket = new Socket("127.0.0.1", 9000);
        //向服务端发送数据
        socket.getOutputStream().write("HelloServer".getBytes());
        socket.getOutputStream().flush();
        System.out.println("向服务端发送数据结束");
        byte[] bytes = new byte[1024];
        //接收服务端回传的数据
        socket.getInputStream().read(bytes);
        System.out.println("接收到服务端的数据:" + new String(bytes));
        socket.close();
    }
}

缺点:

1、IO代码里read操作是阻塞操作,如果连接不做数据读写操作会导致线程阻塞,浪费资源

2、如果线程很多,会导致服务器线程太多,压力太大,比如C10K问题

应用场景:

BIO 方式适用于连接数目比较小且固定的架构, 这种方式对服务器资源要求比较高, 但程序简单易理解。

NIO(Non Blocking IO)

同步非阻塞,服务器实现模式为一个线程可以处理多个请求(连接),客户端发送的连接请求都会注册到多路复用器selector上,多路复用器轮询到连接有IO请求就进行处理,JDK1.4开始引入。

应用场景:

NIO方式适用于连接数目多且连接比较短(轻操作) 的架构, 比如聊天服务器, 弹幕系统, 服务器间通讯,编程比较复杂

NIO非阻塞代码示例:

NioServer 

package com.tuling.nio;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Iterator;

public class NIOServer {

    //public static ExecutorService pool = Executors.newFixedThreadPool(10);

    public static void main(String[] args) throws IOException {
        // 创建一个在本地端口进行监听的服务Socket通道.并设置为非阻塞方式
        ServerSocketChannel ssc = ServerSocketChannel.open();
        //必须配置为非阻塞才能往selector上注册,否则会报错,selector模式本身就是非阻塞模式
        ssc.configureBlocking(false);
        ssc.socket().bind(new InetSocketAddress(9000));
        // 创建一个选择器selector
        Selector selector = Selector.open();
        // 把ServerSocketChannel注册到selector上,并且selector对客户端accept连接操作感兴趣
        ssc.register(selector, SelectionKey.OP_ACCEPT);

        while (true) {
            System.out.println("等待事件发生。。");
            // 轮询监听channel里的key,select是阻塞的,accept()也是阻塞的
            int select = selector.select();

            System.out.println("有事件发生了。。");
            // 有客户端请求,被轮询监听到
            Iterator<SelectionKey> it = selector.selectedKeys().iterator();
            while (it.hasNext()) {
                SelectionKey key = it.next();
                //删除本次已处理的key,防止下次select重复处理
                it.remove();
                handle(key);
            }
        }
    }

    private static void handle(SelectionKey key) throws IOException {
        if (key.isAcceptable()) {
            System.out.println("有客户端连接事件发生了。。");
            ServerSocketChannel ssc = (ServerSocketChannel) key.channel();
            //NIO非阻塞体现:此处accept方法是阻塞的,但是这里因为是发生了连接事件,所以这个方法会马上执行完,不会阻塞
            //处理完连接请求不会继续等待客户端的数据发送
            SocketChannel sc = ssc.accept();
            sc.configureBlocking(false);
            //通过Selector监听Channel时对读事件感兴趣
            sc.register(key.selector(), SelectionKey.OP_READ);
        } else if (key.isReadable()) {
            System.out.println("有客户端数据可读事件发生了。。");
            SocketChannel sc = (SocketChannel) key.channel();
            ByteBuffer buffer = ByteBuffer.allocate(1024);
            //NIO非阻塞体现:首先read方法不会阻塞,其次这种事件响应模型,当调用到read方法时肯定是发生了客户端发送数据的事件
            int len = sc.read(buffer);
            if (len != -1) {
                System.out.println("读取到客户端发送的数据:" + new String(buffer.array(), 0, len));
            }
            ByteBuffer bufferToWrite = ByteBuffer.wrap("HelloClient".getBytes());
            sc.write(bufferToWrite);
            key.interestOps(SelectionKey.OP_READ | SelectionKey.OP_WRITE);
        } else if (key.isWritable()) {
            SocketChannel sc = (SocketChannel) key.channel();
            System.out.println("write事件");
            // NIO事件触发是水平触发
            // 使用Java的NIO编程的时候,在没有数据可以往外写的时候要取消写事件,
            // 在有数据往外写的时候再注册写事件
            key.interestOps(SelectionKey.OP_READ);
            //sc.close();
        }
    }
}

nioClient 

package com.tuling.nio;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.SocketChannel;
import java.util.Iterator;

public class NioClient {
    //通道管理器
    private Selector selector;

    /**
     * 启动客户端测试
     *
     * @throws IOException
     */
    public static void main(String[] args) throws IOException {
        NioClient client = new NioClient();
        client.initClient("127.0.0.1", 9000);
        client.connect();
    }

    /**
     * 获得一个Socket通道,并对该通道做一些初始化的工作
     *
     * @param ip   连接的服务器的ip
     * @param port 连接的服务器的端口号
     * @throws IOException
     */
    public void initClient(String ip, int port) throws IOException {
        // 获得一个Socket通道
        SocketChannel channel = SocketChannel.open();
        // 设置通道为非阻塞
        channel.configureBlocking(false);
        // 获得一个通道管理器
        this.selector = Selector.open();

        // 客户端连接服务器,其实方法执行并没有实现连接,需要在listen()方法中调
        //用channel.finishConnect() 才能完成连接
        channel.connect(new InetSocketAddress(ip, port));
        //将通道管理器和该通道绑定,并为该通道注册SelectionKey.OP_CONNECT事件。
        channel.register(selector, SelectionKey.OP_CONNECT);
    }

    /**
     * 采用轮询的方式监听selector上是否有需要处理的事件,如果有,则进行处理
     *
     * @throws IOException
     */
    public void connect() throws IOException {
        // 轮询访问selector
        while (true) {
            selector.select();
            // 获得selector中选中的项的迭代器
            Iterator<SelectionKey> it = this.selector.selectedKeys().iterator();
            while (it.hasNext()) {
                SelectionKey key = (SelectionKey) it.next();
                // 删除已选的key,以防重复处理
                it.remove();
                // 连接事件发生
                if (key.isConnectable()) {
                    SocketChannel channel = (SocketChannel) key.channel();
                    // 如果正在连接,则完成连接
                    if (channel.isConnectionPending()) {
                        channel.finishConnect();
                    }
                    // 设置成非阻塞
                    channel.configureBlocking(false);
                    //在这里可以给服务端发送信息哦
                    ByteBuffer buffer = ByteBuffer.wrap("HelloServer".getBytes());
                    channel.write(buffer);
                    //在和服务端连接成功之后,为了可以接收到服务端的信息,需要给通道设置读的权限。
                    channel.register(this.selector, SelectionKey.OP_READ);                                            // 获得了可读的事件
                } else if (key.isReadable()) {
                    read(key);
                }
            }
        }
    }

    /**
     * 处理读取服务端发来的信息 的事件
     *
     * @param key
     * @throws IOException
     */
    public void read(SelectionKey key) throws IOException {
        //和服务端的read方法一样
        // 服务器可读取消息:得到事件发生的Socket通道
        SocketChannel channel = (SocketChannel) key.channel();
        // 创建读取的缓冲区
        ByteBuffer buffer = ByteBuffer.allocate(1024);
        int len = channel.read(buffer);
        if (len != -1) {
            System.out.println("客户端收到信息:" + new String(buffer.array(), 0, len));
        }
    }
}

总结:

如果连接数太多的话,会有大量的无效遍历,假如有10000个连接,其中只有1000个连接有写数据,但是由于其他9000个连接并没有断开,我们还是要每次轮询遍历一万次,其中有十分之九的遍历都是无效的,这显然不是一个让人很满意的状态。

NIO引入多路复用器代码示例:

package com.tuling.nio;


import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set;

public class NioSelectorServer {
    public static void main(String[] args) throws IOException, InterruptedException {
        // 创建NIO ServerSocketChannel
        ServerSocketChannel serverSocket = ServerSocketChannel.open();
        serverSocket.socket().bind(new InetSocketAddress(9000));
        // 设置ServerSocketChannel为非阻塞
        serverSocket.configureBlocking(false);
        // 打开Selector处理Channel,即创建epoll
        Selector selector = Selector.open();
        // 把ServerSocketChannel注册到selector上,并且selector对客户端accept连接操作感兴趣
        serverSocket.register(selector, SelectionKey.OP_ACCEPT);
        System.out.println("服务启动成功");
        while (true) {
            // 阻塞等待需要处理的事件发生
            selector.select();
            // 获取selector中注册的全部事件的 SelectionKey 实例
            Set<SelectionKey> selectionKeys = selector.selectedKeys();
            Iterator<SelectionKey> iterator = selectionKeys.iterator();
            // 遍历SelectionKey对事件进行处理
            while (iterator.hasNext()) {
                SelectionKey key = iterator.next();
                // 如果是OP_ACCEPT事件,则进行连接获取和事件注册
                if (key.isAcceptable()) {
                    ServerSocketChannel server = (ServerSocketChannel) key.channel();
                    SocketChannel socketChannel = server.accept();
                    socketChannel.configureBlocking(false);
                    // 这里只注册了读事件,如果需要给客户端发送数据可以注册写事件
                    socketChannel.register(selector, SelectionKey.OP_READ);
                    System.out.println("客户端连接成功");
                } else if (key.isReadable()) {
                    // 如果是OP_READ事件,则进行读取和打印
                    SocketChannel socketChannel = (SocketChannel) key.channel();
                    ByteBuffer byteBuffer = ByteBuffer.allocate(128);
                    int len = socketChannel.read(byteBuffer);
                    // 如果有数据,把数据打印出来
                    if (len > 0) {
                        System.out.println("接收到消息:" + new String(byteBuffer.array()));
                    } else if (len == -1) {
                        // 如果客户端断开连接,关闭Socket
                        // System.out.println("客户端断开连接"); socketChannel.close();
                    }
                }
                // 从事件集合里删除本次处理的key,防止下次select重复处理
                iterator.remove();
            }
        }
    }
}

NIO 有三大核心组件:

Channel(通道), Buffer(缓冲区),Selector(多路复用器)

1、channel 类似于流,每个 channel 对应一个 buffer缓冲区,buffer 底层就是个数组

2、channel 会注册到 selector 上,由 selector 根据 channel 读写事件的发生将其交由某个空闲的线程处理

3、NIO 的 Buffer 和 channel 都是既可以读也可以写

NIO底层在JDK1.4版本是用linux的内核函数select()或poll()来实现,跟上面的NioServer代码类似,selector每次都会轮询所有的sockchannel看下哪个channel有读写事件,有的话就处理,没有就继续遍历,JDK1.5开始引入了epoll基于事件响应机制来优化NIO。

NioSelectorServer 代码里如下几个方法非常重要,我们从Hotspot与Linux内核函数级别来理解下

Selector.open() //创建多路复用器 socketChannel.register(selector, SelectionKey.OP_READ) //将channel注册到多路复用器上 selector.select() //阻塞等待需要处理的事件发生

总结:NIO整个调用流程就是Java调用了操作系统的内核函数来创建Socket,获取到Socket的文件描述符,再创建一个Selector对象,对应操作系统的Epoll描述符,将获取到的Socket连接的文件描述符的事件绑定到Selector对应的Epoll文件描述符上,进行事件的异步通知,这样就实现了使用一条线程,并且不需要太多的无效的遍历,将事件处理交给了操作系统内核(操作系统中断程序实现),大大提高了效率。

Epoll函数详解

int epoll_create(int size);

创建一个epoll实例,并返回一个非负数作为文件描述符,用于对epoll接口的所有后续调用。参数size代表可能会容纳size个描述符,但size不是一个最大值,只是提示操作系统它的数量级,现在这个参数基本上已经弃用了。

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

使用文件描述符epfd引用的epoll实例,对目标文件描述符fd执行op操作。

参数epfd表示epoll对应的文件描述符,参数fd表示socket对应的文件描述符。

参数op有以下几个值:

EPOLL_CTL_ADD:注册新的fd到epfd中,并关联事件event;

EPOLL_CTL_MOD:修改已经注册的fd的监听事件;

EPOLL_CTL_DEL:从epfd中移除fd,并且忽略掉绑定的event,这时event可以为null;

参数event是一个结构体

struct epoll_event { __uint32_t events; /* Epoll events */ epoll_data_t data; /* User data variable */ }; typedef union epoll_data { void *ptr; int fd; __uint32_t u32; __uint64_t u64; } epoll_data_t;

events有很多可选值,这里只举例最常见的几个:

EPOLLIN :表示对应的文件描述符是可读的;

EPOLLOUT:表示对应的文件描述符是可写的;

EPOLLERR:表示对应的文件描述符发生了错误;

成功则返回0,失败返回-1

int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);

等待文件描述符epfd上的事件。

epfd是Epoll对应的文件描述符,events表示调用者所有可用事件的集合,maxevents表示最多等到多少个事件就返回,timeout是超时时间。

I/O多路复用底层主要用的Linux 内核·函数(select,poll,epoll)来实现,windows不支持epoll实现,windows底层是基于winsock2的select函数实现的(不开源)

 

select

poll

epoll(jdk 1.5及以上)

操作方式

遍历

遍历

回调

底层实现

数组

链表

哈希表

IO效率

每次调用都进行线性遍历,时间复杂度为O(n)

每次调用都进行线性遍历,时间复杂度为O(n)

事件通知方式,每当有IO事件就绪,系统注册的回调函数就会被调用,时间复杂度O(1)

最大连接

有上限

无上限

无上限

Redis线程模型

Redis就是典型的基于epoll的NIO线程模型(nginx也是),epoll实例收集所有事件(连接与读写事件),由一个服务端线程连续处理所有事件命令。

Redis底层关于epoll的源码实现在redis的src源码目录的ae_epoll.c文件里,感兴趣可以自行研究。

AIO(NIO 2.0)

异步非阻塞, 由操作系统完成后回调通知服务端程序启动线程去处理, 一般适用于连接数较多且连接时间较长的应用

应用场景:

AIO方式适用于连接数目多且连接比较长(重操作)的架构,JDK7 开始支持

AIO代码示例:

package com.tuling.aio;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousServerSocketChannel;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.CompletionHandler;

public class AIOServer {
    public static void main(String[] args) throws Exception {
        final AsynchronousServerSocketChannel serverChannel =
                AsynchronousServerSocketChannel.open().bind(new InetSocketAddress(9000));

        serverChannel.accept(null, new CompletionHandler<AsynchronousSocketChannel, Object>() {
            @Override
            public void completed(AsynchronousSocketChannel socketChannel, Object attachment) {
                try {
                    // 再此接收客户端连接,如果不写这行代码后面的客户端连接连不上服务端
                    serverChannel.accept(attachment, this);
                    System.out.println(socketChannel.getRemoteAddress());
                    ByteBuffer buffer = ByteBuffer.allocate(1024);
                    socketChannel.read(buffer, buffer, new CompletionHandler<Integer, ByteBuffer>() {
                        @Override
                        public void completed(Integer result, ByteBuffer buffer) {
                            buffer.flip();
                            System.out.println(new String(buffer.array(), 0, result));
                            socketChannel.write(ByteBuffer.wrap("HelloClient".getBytes()));
                        }

                        @Override
                        public void failed(Throwable exc, ByteBuffer buffer) {
                            exc.printStackTrace();
                        }
                    });
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }

            @Override
            public void failed(Throwable exc, Object attachment) {
                exc.printStackTrace();
            }
        });

        Thread.sleep(Integer.MAX_VALUE);
    }
}
package com.tuling.aio;

import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousSocketChannel;

public class AIOClient {

    public static void main(String... args) throws Exception {
        AsynchronousSocketChannel socketChannel = AsynchronousSocketChannel.open();
        socketChannel.connect(new InetSocketAddress("127.0.0.1", 9000)).get();
        socketChannel.write(ByteBuffer.wrap("HelloServer".getBytes()));
        ByteBuffer buffer = ByteBuffer.allocate(512);
        Integer len = socketChannel.read(buffer).get();
        if (len != -1) {
            System.out.println("客户端收到信息:" + new String(buffer.array(), 0, len));
        }
    }
}
/*
 * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.nio.channels;

import java.nio.channels.spi.AsynchronousChannelProvider;
import java.io.IOException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.TimeUnit;

/**
 * A grouping of asynchronous channels for the purpose of resource sharing.
 *
 * <p> An asynchronous channel group encapsulates the mechanics required to
 * handle the completion of I/O operations initiated by {@link AsynchronousChannel
 * asynchronous channels} that are bound to the group. A group has an associated
 * thread pool to which tasks are submitted to handle I/O events and dispatch to
 * {@link CompletionHandler completion-handlers} that consume the result of
 * asynchronous operations performed on channels in the group. In addition to
 * handling I/O events, the pooled threads may also execute other tasks required
 * to support the execution of asynchronous I/O operations.
 *
 * <p> An asynchronous channel group is created by invoking the {@link
 * #withFixedThreadPool withFixedThreadPool} or {@link #withCachedThreadPool
 * withCachedThreadPool} methods defined here. Channels are bound to a group by
 * specifying the group when constructing the channel. The associated thread
 * pool is <em>owned</em> by the group; termination of the group results in the
 * shutdown of the associated thread pool.
 *
 * <p> In addition to groups created explicitly, the Java virtual machine
 * maintains a system-wide <em>default group</em> that is constructed
 * automatically. Asynchronous channels that do not specify a group at
 * construction time are bound to the default group. The default group has an
 * associated thread pool that creates new threads as needed. The default group
 * may be configured by means of system properties defined in the table below.
 * Where the {@link java.util.concurrent.ThreadFactory ThreadFactory} for the
 * default group is not configured then the pooled threads of the default group
 * are {@link Thread#isDaemon daemon} threads.
 *
 * <table border summary="System properties">
 *   <tr>
 *     <th>System property</th>
 *     <th>Description</th>
 *   </tr>
 *   <tr>
 *     <td> {@code java.nio.channels.DefaultThreadPool.threadFactory} </td>
 *     <td> The value of this property is taken to be the fully-qualified name
 *     of a concrete {@link java.util.concurrent.ThreadFactory ThreadFactory}
 *     class. The class is loaded using the system class loader and instantiated.
 *     The factory's {@link java.util.concurrent.ThreadFactory#newThread
 *     newThread} method is invoked to create each thread for the default
 *     group's thread pool. If the process to load and instantiate the value
 *     of the property fails then an unspecified error is thrown during the
 *     construction of the default group. </td>
 *   </tr>
 *   <tr>
 *     <td> {@code java.nio.channels.DefaultThreadPool.initialSize} </td>
 *     <td> The value of the {@code initialSize} parameter for the default
 *     group (see {@link #withCachedThreadPool withCachedThreadPool}).
 *     The value of the property is taken to be the {@code String}
 *     representation of an {@code Integer} that is the initial size parameter.
 *     If the value cannot be parsed as an {@code Integer} it causes an
 *     unspecified error to be thrown during the construction of the default
 *     group. </td>
 *   </tr>
 * </table>
 *
 * <a name="threading"></a><h2>Threading</h2>
 *
 * <p> The completion handler for an I/O operation initiated on a channel bound
 * to a group is guaranteed to be invoked by one of the pooled threads in the
 * group. This ensures that the completion handler is run by a thread with the
 * expected <em>identity</em>.
 *
 * <p> Where an I/O operation completes immediately, and the initiating thread
 * is one of the pooled threads in the group then the completion handler may
 * be invoked directly by the initiating thread. To avoid stack overflow, an
 * implementation may impose a limit as to the number of activations on the
 * thread stack. Some I/O operations may prohibit invoking the completion
 * handler directly by the initiating thread (see {@link
 * AsynchronousServerSocketChannel#accept(Object,CompletionHandler) accept}).
 *
 * <a name="shutdown"></a><h2>Shutdown and Termination</h2>
 *
 * <p> The {@link #shutdown() shutdown} method is used to initiate an <em>orderly
 * shutdown</em> of a group. An orderly shutdown marks the group as shutdown;
 * further attempts to construct a channel that binds to the group will throw
 * {@link ShutdownChannelGroupException}. Whether or not a group is shutdown can
 * be tested using the {@link #isShutdown() isShutdown} method. Once shutdown,
 * the group <em>terminates</em> when all asynchronous channels that are bound to
 * the group are closed, all actively executing completion handlers have run to
 * completion, and resources used by the group are released. No attempt is made
 * to stop or interrupt threads that are executing completion handlers. The
 * {@link #isTerminated() isTerminated} method is used to test if the group has
 * terminated, and the {@link #awaitTermination awaitTermination} method can be
 * used to block until the group has terminated.
 *
 * <p> The {@link #shutdownNow() shutdownNow} method can be used to initiate a
 * <em>forceful shutdown</em> of the group. In addition to the actions performed
 * by an orderly shutdown, the {@code shutdownNow} method closes all open channels
 * in the group as if by invoking the {@link AsynchronousChannel#close close}
 * method.
 *
 * @since 1.7
 *
 * @see AsynchronousSocketChannel#open(AsynchronousChannelGroup)
 * @see AsynchronousServerSocketChannel#open(AsynchronousChannelGroup)
 */

public abstract class AsynchronousChannelGroup {
    private final AsynchronousChannelProvider provider;

    /**
     * Initialize a new instance of this class.
     *
     * @param   provider
     *          The asynchronous channel provider for this group
     */
    protected AsynchronousChannelGroup(AsynchronousChannelProvider provider) {
        this.provider = provider;
    }

    /**
     * Returns the provider that created this channel group.
     *
     * @return  The provider that created this channel group
     */
    public final AsynchronousChannelProvider provider() {
        return provider;
    }

    /**
     * Creates an asynchronous channel group with a fixed thread pool.
     *
     * <p> The resulting asynchronous channel group reuses a fixed number of
     * threads. At any point, at most {@code nThreads} threads will be active
     * processing tasks that are submitted to handle I/O events and dispatch
     * completion results for operations initiated on asynchronous channels in
     * the group.
     *
     * <p> The group is created by invoking the {@link
     * AsynchronousChannelProvider#openAsynchronousChannelGroup(int,ThreadFactory)
     * openAsynchronousChannelGroup(int,ThreadFactory)} method of the system-wide
     * default {@link AsynchronousChannelProvider} object.
     *
     * @param   nThreads
     *          The number of threads in the pool
     * @param   threadFactory
     *          The factory to use when creating new threads
     *
     * @return  A new asynchronous channel group
     *
     * @throws  IllegalArgumentException
     *          If {@code nThreads <= 0}
     * @throws  IOException
     *          If an I/O error occurs
     */
    public static AsynchronousChannelGroup withFixedThreadPool(int nThreads,
                                                               ThreadFactory threadFactory)
        throws IOException
    {
        return AsynchronousChannelProvider.provider()
            .openAsynchronousChannelGroup(nThreads, threadFactory);
    }

    /**
     * Creates an asynchronous channel group with a given thread pool that
     * creates new threads as needed.
     *
     * <p> The {@code executor} parameter is an {@code ExecutorService} that
     * creates new threads as needed to execute tasks that are submitted to
     * handle I/O events and dispatch completion results for operations initiated
     * on asynchronous channels in the group. It may reuse previously constructed
     * threads when they are available.
     *
     * <p> The {@code initialSize} parameter may be used by the implementation
     * as a <em>hint</em> as to the initial number of tasks it may submit. For
     * example, it may be used to indicate the initial number of threads that
     * wait on I/O events.
     *
     * <p> The executor is intended to be used exclusively by the resulting
     * asynchronous channel group. Termination of the group results in the
     * orderly  {@link ExecutorService#shutdown shutdown} of the executor
     * service. Shutting down the executor service by other means results in
     * unspecified behavior.
     *
     * <p> The group is created by invoking the {@link
     * AsynchronousChannelProvider#openAsynchronousChannelGroup(ExecutorService,int)
     * openAsynchronousChannelGroup(ExecutorService,int)} method of the system-wide
     * default {@link AsynchronousChannelProvider} object.
     *
     * @param   executor
     *          The thread pool for the resulting group
     * @param   initialSize
     *          A value {@code >=0} or a negative value for implementation
     *          specific default
     *
     * @return  A new asynchronous channel group
     *
     * @throws  IOException
     *          If an I/O error occurs
     *
     * @see java.util.concurrent.Executors#newCachedThreadPool
     */
    public static AsynchronousChannelGroup withCachedThreadPool(ExecutorService executor,
                                                                int initialSize)
        throws IOException
    {
        return AsynchronousChannelProvider.provider()
            .openAsynchronousChannelGroup(executor, initialSize);
    }

    /**
     * Creates an asynchronous channel group with a given thread pool.
     *
     * <p> The {@code executor} parameter is an {@code ExecutorService} that
     * executes tasks submitted to dispatch completion results for operations
     * initiated on asynchronous channels in the group.
     *
     * <p> Care should be taken when configuring the executor service. It
     * should support <em>direct handoff</em> or <em>unbounded queuing</em> of
     * submitted tasks, and the thread that invokes the {@link
     * ExecutorService#execute execute} method should never invoke the task
     * directly. An implementation may mandate additional constraints.
     *
     * <p> The executor is intended to be used exclusively by the resulting
     * asynchronous channel group. Termination of the group results in the
     * orderly  {@link ExecutorService#shutdown shutdown} of the executor
     * service. Shutting down the executor service by other means results in
     * unspecified behavior.
     *
     * <p> The group is created by invoking the {@link
     * AsynchronousChannelProvider#openAsynchronousChannelGroup(ExecutorService,int)
     * openAsynchronousChannelGroup(ExecutorService,int)} method of the system-wide
     * default {@link AsynchronousChannelProvider} object with an {@code
     * initialSize} of {@code 0}.
     *
     * @param   executor
     *          The thread pool for the resulting group
     *
     * @return  A new asynchronous channel group
     *
     * @throws  IOException
     *          If an I/O error occurs
     */
    public static AsynchronousChannelGroup withThreadPool(ExecutorService executor)
        throws IOException
    {
        return AsynchronousChannelProvider.provider()
            .openAsynchronousChannelGroup(executor, 0);
    }

    /**
     * Tells whether or not this asynchronous channel group is shutdown.
     *
     * @return  {@code true} if this asynchronous channel group is shutdown or
     *          has been marked for shutdown.
     */
    public abstract boolean isShutdown();

    /**
     * Tells whether or not this group has terminated.
     *
     * <p> Where this method returns {@code true}, then the associated thread
     * pool has also {@link ExecutorService#isTerminated terminated}.
     *
     * @return  {@code true} if this group has terminated
     */
    public abstract boolean isTerminated();

    /**
     * Initiates an orderly shutdown of the group.
     *
     * <p> This method marks the group as shutdown. Further attempts to construct
     * channel that binds to this group will throw {@link ShutdownChannelGroupException}.
     * The group terminates when all asynchronous channels in the group are
     * closed, all actively executing completion handlers have run to completion,
     * and all resources have been released. This method has no effect if the
     * group is already shutdown.
     */
    public abstract void shutdown();

    /**
     * Shuts down the group and closes all open channels in the group.
     *
     * <p> In addition to the actions performed by the {@link #shutdown() shutdown}
     * method, this method invokes the {@link AsynchronousChannel#close close}
     * method on all open channels in the group. This method does not attempt to
     * stop or interrupt threads that are executing completion handlers. The
     * group terminates when all actively executing completion handlers have run
     * to completion and all resources have been released. This method may be
     * invoked at any time. If some other thread has already invoked it, then
     * another invocation will block until the first invocation is complete,
     * after which it will return without effect.
     *
     * @throws  IOException
     *          If an I/O error occurs
     */
    public abstract void shutdownNow() throws IOException;

    /**
     * Awaits termination of the group.

     * <p> This method blocks until the group has terminated, or the timeout
     * occurs, or the current thread is interrupted, whichever happens first.
     *
     * @param   timeout
     *          The maximum time to wait, or zero or less to not wait
     * @param   unit
     *          The time unit of the timeout argument
     *
     * @return  {@code true} if the group has terminated; {@code false} if the
     *          timeout elapsed before termination
     *
     * @throws  InterruptedException
     *          If interrupted while waiting
     */
    public abstract boolean awaitTermination(long timeout, TimeUnit unit)
        throws InterruptedException;
}

BIO、 NIO、 AIO 对比:

为什么Netty使用NIO而不是AIO?

在Linux系统上,AIO的底层实现仍使用Epoll,没有很好实现AIO,因此在性能上没有明显的优势,而且被JDK封装了一层不容易深度优化,Linux上AIO还不够成熟。Netty是异步非阻塞框架,Netty在NIO上做了很多异步的封装。

同步异步与阻塞非阻塞(段子)

老张爱喝茶,废话不说,煮开水。

出场人物:老张,水壶两把(普通水壶,简称水壶;会响的水壶,简称响水壶)。

1 老张把水壶放到火上,立等水开。(同步阻塞)

老张觉得自己有点傻

2 老张把水壶放到火上,去客厅看电视,时不时去厨房看看水开没有。(同步非阻塞)

老张还是觉得自己有点傻,于是变高端了,买了把会响笛的那种水壶。水开之后,能大声发出嘀~~~~的噪音。

3 老张把响水壶放到火上,立等水开。(异步阻塞)

老张觉得这样傻等意义不大

4 老张把响水壶放到火上,去客厅看电视,水壶响之前不再去看它了,响了再去拿壶。(异步非阻塞)

老张觉得自己聪明了。

所谓同步异步,只是对于水壶而言。

普通水壶,同步;响水壶,异步。

虽然都能干活,但响水壶可以在自己完工之后,提示老张水开了。这是普通水壶所不能及的。

同步只能让调用者去轮询自己(情况2中),造成老张效率的低下。

所谓阻塞非阻塞,仅仅对于老张而言。

立等的老张,阻塞;看电视的老张,非阻塞。

猜你喜欢

转载自blog.csdn.net/nmjhehe/article/details/114740223