同一矢量和张量在不同坐标系下的转换

坐标系定义

球坐标系 ( R , θ , ϕ ) (R,\theta,\phi) (R,θ,ϕ),直角坐标系 ( x , y , z ) (x,y,z) (x,y,z)

x = R sin ⁡ θ cos ⁡ ϕ ,    y = R sin ⁡ θ cos ⁡ ϕ ,    z = R cos ⁡ θ x=R\sin\theta\cos\phi,\;y=R\sin\theta\cos\phi,\;z=R\cos\theta x=Rsinθcosϕ,y=Rsinθcosϕ,z=Rcosθ

球坐标系和直角坐标系单位矢量转换

( R ^ , θ ^ , ϕ ^ \hat{R},\hat{\theta},\hat{\phi} R^,θ^,ϕ^)为球坐标系的局部直角坐标单位矢量, ( x ^ , y ^ , z ^ ) (\hat{x},\hat{y},\hat{z}) (x^,y^,z^)为全局坐标单位矢量

( R ^ θ ^ ϕ ^ ) = ( sin ⁡ θ cos ⁡ ϕ sin ⁡ θ sin ⁡ ϕ cos ⁡ θ cos ⁡ θ cos ⁡ ϕ cos ⁡ θ sin ⁡ ϕ − sin ⁡ θ − sin ⁡ θ cos ⁡ φ 0 ) ( x ^ y ^ z ^ ) \left(\begin{array}{c}\hat{R}\\\hat{\theta}\\\hat{\phi}\end{array}\right)=\left(\begin{array}{ccc}\sin\theta\cos\phi&\sin\theta\sin\phi&\cos\theta\\\cos\theta\cos\phi&\cos\theta\sin\phi&-\sin\theta\\-\sin\theta&\cos\varphi&0\end{array}\right)\left(\begin{array}{c}\hat{x}\\\hat{y}\\\hat{z}\end{array}\right) R^θ^ϕ^=sinθcosϕcosθcosϕsinθsinθsinϕcosθsinϕcosφcosθsinθ0x^y^z^

A = ( sin ⁡ θ cos ⁡ ϕ sin ⁡ θ sin ⁡ ϕ cos ⁡ θ cos ⁡ θ cos ⁡ ϕ cos ⁡ θ sin ⁡ ϕ − sin ⁡ θ − sin ⁡ θ cos ⁡ φ 0 ) \mathbf{A}=\left(\begin{array}{ccc}\sin\theta\cos\phi&\sin\theta\sin\phi&\cos\theta\\\cos\theta\cos\phi&\cos\theta\sin\phi&-\sin\theta\\-\sin\theta&\cos\varphi&0\end{array}\right) A=sinθcosϕcosθcosϕsinθsinθsinϕcosθsinϕcosφcosθsinθ0 A \mathbf{A} A是正交矩阵, A T A = I \mathbf{A}^T\mathbf{A}=\mathbf{I} ATA=I

那么 ( R ^ θ ^ ϕ ^ ) = A ( x ^ y ^ z ^ ) \left(\begin{array}{c}\hat{R}\\\hat{\theta}\\\hat{\phi}\end{array}\right)=\mathbf{A}\left(\begin{array}{c}\hat{x}\\\hat{y}\\\hat{z}\end{array}\right) R^θ^ϕ^=Ax^y^z^ ( x ^ y ^ z ^ ) = A T ( R ^ θ ^ ϕ ^ ) \left(\begin{array}{c}\hat{x}\\\hat{y}\\\hat{z}\end{array}\right)=\mathbf{A}^T\left(\begin{array}{c}\hat{R}\\\hat{\theta}\\\hat{\phi}\end{array}\right) x^y^z^=ATR^θ^ϕ^

不同坐标系的矢量转换

矢量 g = g x x ^ + g y y ^ + g z z ^ = ( x ^ y ^ z ^ ) ( g x g y g z ) = ( R ^ θ ^ ϕ ^ ) A ( g x g y g z ) \mathbf{g}=g_x\hat{x}+g_y\hat{y}+g_z\hat{z}=\left(\begin{array}{ccc}\hat{x}&\hat{y}&\hat{z}\end{array}\right)\left(\begin{array}{c}g_x\\g_y\\g_z\end{array}\right)=\left(\begin{array}{ccc}\hat{R}&\hat{\theta}&\hat{\phi}\end{array}\right)\mathbf{A}\left(\begin{array}{c}g_x\\g_y\\g_z\end{array}\right) g=gxx^+gyy^+gzz^=(x^y^z^)gxgygz=(R^θ^ϕ^)Agxgygz

所以 ( g R g θ g ϕ ) = A ( g x g y g z ) \left(\begin{array}{c}g_R\\g_{\theta}\\g_{\phi}\end{array}\right)=\mathbf{A}\left(\begin{array}{c}g_{x}\\g_{y}\\g_{z}\end{array}\right) gRgθgϕ=Agxgygz

不同坐标系的张量转换

直角坐标系下的张量 T c = ( T x x T x y T x z T y x T y y T y z T z x T z y T z z ) \mathbf{T}_{c}=\left(\begin{array}{ccc}T_{xx}&T_{xy}&T_{xz}\\T_{yx}&T_{yy}&T_{yz}\\T_{zx}&T_{zy}&T_{zz}\end{array}\right) Tc=TxxTyxTzxTxyTyyTzyTxzTyzTzz

写成分量形式

T = T x x x ^ x ^ + T x y x ^ y ^ + T x z x ^ z ^ + T y x y ^ x ^ + T y y y ^ y ^ + T y z y ^ z ^ + T z x z ^ x ^ + T z y z ^ y ^ + T z z z ^ z ^ = ( x ^ y ^ z ^ ) ( T x x T x y T x z T y x T y y T y z T z x T z y T z z ) ( x ^ y ^ z ^ ) \mathbf{T}=\begin{array}{c}T_{xx}\hat{x}\hat{x}+T_{xy}\hat{x}\hat{y}+T_{xz}\hat{x}\hat{z}\\+T_{yx}\hat{y}\hat{x}+T_{yy}\hat{y}\hat{y}+T_{yz}\hat{y}\hat{z}\\+T_{zx}\hat{z}\hat{x}+T_{zy}\hat{z}\hat{y}+T_{zz}\hat{z}\hat{z}\end{array}=\left(\begin{array}{ccc}\hat{x}&\hat{y}&\hat{z}\end{array}\right)\left(\begin{array}{ccc}T_{xx}&T_{xy}&T_{xz}\\T_{yx}&T_{yy}&T_{yz}\\T_{zx}&T_{zy}&T_{zz}\end{array}\right)\left(\begin{array}{c}\hat{x}\\\hat{y}\\\hat{z}\end{array}\right) T=Txxx^x^+Txyx^y^+Txzx^z^+Tyxy^x^+Tyyy^y^+Tyzy^z^+Tzxz^x^+Tzyz^y^+Tzzz^z^=(x^y^z^)TxxTyxTzxTxyTyyTzyTxzTyzTzzx^y^z^

代入 ( x ^ y ^ z ^ ) = A T ( R ^ θ ^ ϕ ^ ) \left(\begin{array}{c}\hat{x}\\\hat{y}\\\hat{z}\end{array}\right)=\mathbf{A}^T\left(\begin{array}{c}\hat{R}\\\hat{\theta}\\\hat{\phi}\end{array}\right) x^y^z^=ATR^θ^ϕ^

T = ( R ^ θ ^ ϕ ^ ) A ( T x x T x y T x z T y x T y y T y z T z x T z y T z z ) A T ( R ^ θ ^ ϕ ^ ) \mathbf{T}=\left(\begin{array}{ccc}\hat{R}&\hat{\theta}&\hat{\phi}\end{array}\right)\mathbf{A}\left(\begin{array}{ccc}T_{xx}&T_{xy}&T_{xz}\\T_{yx}&T_{yy}&T_{yz}\\T_{zx}&T_{zy}&T_{zz}\end{array}\right)\mathbf{A}^T\left(\begin{array}{c}\hat{R}\\\hat{\theta}\\\hat{\phi}\end{array}\right) T=(R^θ^ϕ^)ATxxTyxTzxTxyTyyTzyTxzTyzTzzATR^θ^ϕ^

所以,球坐标系下张量为

T s = A T c A T \mathbf{T}_s=\mathbf{A}\mathbf{T}_c\mathbf{A}^T Ts=ATcAT

通过矢量的方向导数推导梯度张量的坐标系转换关系

u ^ \hat{u} u^是一个空间中的任意方向的单位矢量

矢量 g \mathbf{g} g沿着 u ^ \hat{\mathbf{u}} u^的方向导数为
g u = ( u ^ ⋅ ∇ ) g \mathbf{g}_u=(\hat{\mathbf{u}}\cdot \nabla)\mathbf{g} gu=(u^)g

( u ^ ⋅ ∇ ) g = ( u x ∂ ∂ x + u y ∂ ∂ y + u z ∂ ∂ z ) g = ( u x ∂ g x ∂ x + u y ∂ g x ∂ y + u z ∂ g x ∂ z ) x ^ + ( u x ∂ g y ∂ x + u y ∂ g y ∂ y + u z ∂ g y ∂ z ) y ^ + ( u x ∂ g z ∂ x + u y ∂ g z ∂ y + u z ∂ g z ∂ z ) z ^ = ( T x x T x y T x z T y x T y y T y z T z x T z y T z z ) ( u x u y u z ) = T u \begin{aligned}(\hat{\mathbf{u}}\cdot \nabla)\mathbf{g}=&(u_x\frac{\partial}{\partial x}+u_y\frac{\partial}{\partial y}+u_z\frac{\partial}{\partial z})\mathbf{g}\\ =&(u_x\frac{\partial g_x}{\partial x}+u_y\frac{\partial g_x}{\partial y}+u_z\frac{\partial g_x}{\partial z})\hat{x}\\ &+(u_x\frac{\partial g_y}{\partial x}+u_y\frac{\partial g_y}{\partial y}+u_z\frac{\partial g_y}{\partial z})\hat{y}\\ &+(u_x\frac{\partial g_z}{\partial x}+u_y\frac{\partial g_z}{\partial y}+u_z\frac{\partial g_z}{\partial z})\hat{z}\\ =&\left(\begin{array}{ccc}T_{xx}&T_{xy}&T_{xz}\\T_{yx}&T_{yy}&T_{yz}\\T_{zx}&T_{zy}&T_{zz}\end{array}\right)\left(\begin{array}{c}u_{x}\\u_{y}\\u_{z}\end{array}\right)=\mathbf{T}\mathbf{u}\end{aligned} (u^)g===(uxx+uyy+uzz)g(uxxgx+uyygx+uzzgx)x^+(uxxgy+uyygy+uzzgy)y^+(uxxgz+uyygz+uzzgz)z^TxxTyxTzxTxyTyyTzyTxzTyzTzzuxuyuz=Tu

那么
g u ( s ) = A g u ( c ) \mathbf{g}_u^{(s)}=\mathbf{A}\mathbf{g}_u^{(c)} gu(s)=Agu(c)
上标 ( s ) (s) (s)表示球坐标, ( c ) (c) (c)表示直角坐标


g u ( c ) = T c u ^ c \mathbf{g}_u^{(c)}=\mathbf{T}_c\mathbf{\hat{u}}_c gu(c)=Tcu^c
u ^ c = A T u ^ s \mathbf{\hat{u}}_c=\mathbf{A}^T\mathbf{\hat{u}}_s u^c=ATu^s

所以
g u ( s ) = A T c A T u ^ s \mathbf{g}_u^{(s)}=\mathbf{A}\mathbf{T}_c\mathbf{A}^T\mathbf{\hat{u}}_s gu(s)=ATcATu^s

在球坐标系下也有
g u ( s ) = T s u ^ s \mathbf{g}_u^{(s)}=\mathbf{T}_s\mathbf{\hat{u}}_s gu(s)=Tsu^s

所以
T s = A T c A T \mathbf{T}_s=\mathbf{A}\mathbf{T}_c\mathbf{A}^T Ts=ATcAT

猜你喜欢

转载自blog.csdn.net/X_And_Y/article/details/107584893
今日推荐