艺术~几种唯一ID的生成的方案

前言

ID有着很重要的作用,就如同我们的身份证ID,是标明唯一的一个号码,尤其在大数据时代,数据成千上万,如果我们还想通过ID来标明身份就会有一定的困难,会有ID冲突的风险。

特别是在复杂的分布式系统业务场景中如果ID冲突,将会面临很大的业务问题。

我们在设计ID生成方案的时候往往考虑一下几个特点

方案特性

唯一性:确保生成的ID是全网唯一的。
有序递增性:确保生成的ID是对于某个用户或者业务是按一定的数字有序递增的。
高可用性:确保任何时候都能正确的生成ID。
带时间:ID里面包含时间,一眼扫过去就知道哪天的交易。也就是有着高的可阅读性。
信息安全:ID可能会保存一些业务信息,这些信息要保证安全。

ID的生成方案

1. UUID

算法的核心思想是结合机器的网卡、当地时间、一个随记数来生成UUID。

优点:本地生成,生成简单,性能好,没有高可用风险
缺点:长度过长,存储冗余,且无序不可读,查询效率低

2. 数据库自增ID

使用数据库的id自增策略,如 MySQL 的 auto_increment。并且可以使用两台数据库分别设置不同步长,生成不重复ID的策略来实现高可用。

优点:数据库生成的ID绝对有序,高可用实现方式简单
缺点:需要独立部署数据库实例,成本高,有性能瓶颈

3.Twitter的snowflake算法(雪花算法)

如下图的所示,Twitter 的 Snowflake 算法由下面几部分组成:
在这里插入图片描述
1位符号位:

扫描二维码关注公众号,回复: 12845290 查看本文章

由于 long 类型在 java 中带符号的,最高位为符号位,正数为 0,负数为 1,且实际系统中所使用的ID一般都是正数,所以最高位为 0。

41位时间戳(毫秒级):

需要注意的是此处的 41 位时间戳并非存储当前时间的时间戳,而是存储时间戳的差值(当前时间戳 - 起始时间戳),这里的起始时间戳一般是ID生成器开始使用的时间戳,由程序来指定,所以41位毫秒时间戳最多可以使用 (1 << 41) / (1000x60x60x24x365) = 69年。

10位数据机器位:

包括5位数据标识位和5位机器标识位,这10位决定了分布式系统中最多可以部署 1 < n < 1024 个节点。超过这个数量,生成的ID就有可能会冲突。

12位毫秒内的序列:

这 12 位计数支持每个节点每毫秒(同一台机器,同一时刻)最多生成 1 << 12 = 4096个ID
加起来刚好64位,为一个Long型。

优点:高性能,低延迟,按时间有序,一般不会造成ID碰撞,不依赖第三方数据库,以服务的方式部署,稳定性也好
缺点:需要独立的开发和部署,依赖于机器的时钟,如果遇到机器时钟回拨就会有问题。

java的简单实现

public class SnowflakeIdWorker {
    
    
 // ==============================Fields==================
    /** 开始时间截 (2019-08-06) */
    private final long twepoch = 1565020800000L;
 
    /** 机器id所占的位数 */
    private final long workerIdBits = 5L;
 
    /** 数据标识id所占的位数 */
    private final long datacenterIdBits = 5L;
 
    /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
 
    /** 支持的最大数据标识id,结果是31 */
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
 
    /** 序列在id中占的位数 */
    private final long sequenceBits = 12L;
 
    /** 机器ID向左移12位 */
    private final long workerIdShift = sequenceBits;
 
    /** 数据标识id向左移17位(12+5) */
    private final long datacenterIdShift = sequenceBits + workerIdBits;
 
    /** 时间截向左移22位(5+5+12) */
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
 
    /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);
 
    /** 工作机器ID(0~31) */
    private long workerId;
 
    /** 数据中心ID(0~31) */
    private long datacenterId;
 
    /** 毫秒内序列(0~4095) */
    private long sequence = 0L;
 
    /** 上次生成ID的时间截 */
    private long lastTimestamp = -1L;
 
     //==============================Constructors====================
    /**
     * 构造函数
     * @param workerId 工作ID (0~31)
     * @param datacenterId 数据中心ID (0~31)
     */
    public SnowflakeIdWorker(long workerId, long datacenterId) {
    
    
        if (workerId > maxWorkerId || workerId < 0) {
    
    
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
    
    
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
 
    // ==============================Methods=================================
    /**
     * 获得下一个ID (该方法是线程安全的)
     * @return SnowflakeId
     */
    public synchronized long nextId() {
    
    
        long timestamp = timeGen();
 
        //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
    
    
            throw new RuntimeException(
                    String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
 
        //如果是同一时间生成的,则进行毫秒内序列
        if (lastTimestamp == timestamp) {
    
    
            sequence = (sequence + 1) & sequenceMask;
            //毫秒内序列溢出
            if (sequence == 0) {
    
    
                //阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        //时间戳改变,毫秒内序列重置
        else {
    
    
            sequence = 0L;
        }
 
        //上次生成ID的时间截
        lastTimestamp = timestamp;
 
        //移位并通过或运算拼到一起组成64位的ID
        return ((timestamp - twepoch) << timestampLeftShift) //
                | (datacenterId << datacenterIdShift) //
                | (workerId << workerIdShift) //
                | sequence;
    }
 
    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected long tilNextMillis(long lastTimestamp) {
    
    
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
    
    
            timestamp = timeGen();
        }
        return timestamp;
    }
 
    /**
     * 返回以毫秒为单位的当前时间
     * @return 当前时间(毫秒)
     */
    protected long timeGen() {
    
    
        return System.currentTimeMillis();
    }
 
    //==============================Test=============================================
    /** 测试 */
    public static void main(String[] args) {
    
    
        SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
        for (int i = 0; i < 10; i++) {
    
    
            long id = idWorker.nextId();
            System.out.println(Long.toBinaryString(id));
            System.out.println(id);
        }
    }
}

4. 美团Leaf

Leaf 是美团开源的分布式ID生成器,能保证全局唯一性、趋势递增、单调递增、信息安全,而且还解决了机器回拨可能造成ID不唯一的缺陷,但也需要依赖关系数据库、Zookeeper等中间件。
官网说明:https://tech.meituan.com/2017/04/21/mt-leaf.html

Leaf这个名字是来自德国哲学家、数学家莱布尼茨的一句话: >There are no two identical leaves in the world > “世界上没有两片相同的树叶”

解决时钟问题

服务启动时首先检查自己是否写过ZooKeeper leaf_forever节点:

  • 若写过,则用自身系统时间与leaf_forever/${self}节点记录时间做比较,若小于leaf_forever/${self}时间则认为机器时间发生了大步长回拨,服务启动失败并报警。
  • 若未写过,证明是新服务节点,直接创建持久节点leaf_forever/${self}并写入自身系统时间,接下来综合对比其余Leaf节点的系统时间来判断自身系统时间是否准确,具体做法是取leaf_temporary下的所有临时节点(所有运行中的Leaf-snowflake节点)的服务IP:Port,然后通过RPC请求得到所有节点的系统时间,计算sum(time)/nodeSize。若abs( 系统时间-sum(time)/nodeSize ) < 阈值,认为当前系统时间准确,正常启动服务,同时写临时节点leaf_temporary/${self} 维持租约。否则认为本机系统时间发生大步长偏移,启动失败并报警。
    每隔一段时间(3s)上报自身系统时间写入leaf_forever/${self}

而且leaf在本机文件系统上缓存一个workerID文件。当ZooKeeper出现问题,恰好机器出现问题需要重启时,能保证服务能够正常启动。这样做到了对三方组件的弱依赖。一定程度上提高了稳定性。

猜你喜欢

转载自blog.csdn.net/Shangxingya/article/details/114988314