Java中多线程的理解及实现

Java中多线程的理解及实现

一、概念的理解

1、程序(programm)

概念:是为完成特定任务、用某种语言编写的一组指令的集合。即指一段静态的代码。

2、进程(process)

概念:程序的一次执行过程,或是正在运行的一个程序。
说明:进程作为资源分配的单位,系统在运行时会为每个进程分配不同的内存区域
例如:使用Ctrl+Alt+Delete快捷键打开任务管理器:
在这里插入图片描述
以上即为计算机正在进行的各个进程

3、线程(thread)

概念:进程可进一步细化为线程,是一个程序内部的一条执行路径。
说明:线程作为调度和执行的单位,每个线程拥独立的运行栈和程序计数器(pc),线程切换的开销小。
在这里插入图片描述


例如上图展开各个进程出现的执行路径:
在这里插入图片描述


线程的生命周期

在这里插入图片描述
说明:
1.生命周期关注两个概念:状态、相应的方法
2.关注:状态a–>状态b:哪些方法执行了(回调方法)
某个方法主动调用:状态a–>状态b
3.阻塞:临时状态,不可以作为最终状态
死亡:最终状态。

4、单核CPU与多核CPU的理解

    单核CPU,其实是一种假的多线程,因为在一个时间单元内,也只能执行一个线程的任务。例如:虽然有多车道,但是收费站只有一个工作人员在收费,只有收了费才能通过,那么CPU就好比收费人员。如果某个人不想交钱,那么收费人员可以把他“挂起”(晾着他,等他想通了,准备好了钱,再去收费。)但是因为CPU时间单元特别短,因此感觉不出来。

   如果是多核的话,才能更好的发挥多线程的效率。(当然了,这也并不绝对,也要看实际配置以及要考虑实际系统是否兼容等实际问题的,例如现在号称有十核cpu的某安卓手机,干事的时候要么一核做事九核围观,要么火力全开手机秒变暖宝宝,实际效率往往不如双核的ios)

5、并行与并发的理解

并行:多个CPU同时执行多个任务。比如:多个人同时做不同的事。
并发:一个CPU(采用时间片)同时执行多个任务。比如:多个人分工合作做同一件事


二、多线程的实现

注意:一个Java应用程序java.exe,其实至少三个线程:main()主线程,gc()垃圾回收线程,异常处理线程。当然如果发生异常,会影响主线程。

两种主要实现方式(Thread类)

方式一:继承Thread类的方式

  1. 创建一个继承于Thread类的子类
  2. 重写Thread类的run() --> 将此线程执行的操作声明在run()中
  3. 创建Thread类的子类的对象
  4. 通过此对象调用start():①启动当前线程 ② 调用当前线程的run()

代码如下(示例):

//1. 创建一个继承于Thread类的子类
class MyThread extends Thread {
    
    
    //2. 重写Thread类的run()
    @Override
    public void run() {
    
    
        for (int i = 0; i < 100; i++) {
    
    
            if(i % 2 == 0){
    
    
                System.out.println(Thread.currentThread().getName() + ":" + i);
            }
        }
    }
}


public class ThreadTest {
    
    
    public static void main(String[] args) {
    
    
        //3. 创建Thread类的子类的对象
        MyThread t1 = new MyThread();

        //4.通过此对象调用start():①启动当前线程 ② 调用当前线程的run()
        t1.start();
        
        //重新创建一个线程的对象
        MyThread t2 = new MyThread();
        t2.start();


        //注意:如下操作仍然是在main线程中执行的。
        for (int i = 0; i < 100; i++) {
    
    
            if(i % 2 == 0){
    
    
                System.out.println(Thread.currentThread().getName() + ":" + i + "***********main()************");
            }
        }
    }

}

问题一:我们启动一个线程,必须调用start(),不能调用run()的方式启动线程。
问题二:如果再启动一个线程,必须重新创建一个Thread子类的对象,调用此对象的start().

方式二:实现Runnable接口的方式

  1. 创建一个实现了Runnable接口的类
  2. 实现类去实现Runnable中的抽象方法:run()
  3. 创建实现类的对象
  4. 将此对象作为参数传递到Thread类的构造器中,创建Thread类的对象
  5. 通过Thread类的对象调用start()
    代码如下(示例):
//1. 创建一个实现了Runnable接口的类
class MThread implements Runnable{
    
    

    //2. 实现类去实现Runnable中的抽象方法:run()
    @Override
    public void run() {
    
    
        for (int i = 0; i < 100; i++) {
    
    
            if(i % 2 == 0){
    
    
                System.out.println(Thread.currentThread().getName() + ":" + i);
            }

        }
    }
}

public class ThreadTest1 {
    
    
    public static void main(String[] args) {
    
    
        //3. 创建实现类的对象
        MThread mThread = new MThread();
        //4. 将此对象作为参数传递到Thread类的构造器中,创建Thread类的对象
        Thread t1 = new Thread(mThread);
        t1.setName("线程1");
        //5. 通过Thread类的对象调用start():① 启动线程 ②调用当前线程的run()-->调用了Runnable类型的target的run()
        t1.start();

        //再启动一个线程,遍历100以内的偶数
        Thread t2 = new Thread(mThread);
        t2.setName("线程2");
        t2.start();
    }

}

比较创建线程的两种方式。
开发中:优先选择:实现Runnable接口的方式
原因:

  1. 实现的方式没有类的单继承性的局限性
  2. 实现的方式更适合来处理多个线程有共享数据的情况。

联系:public class Thread implements Runnable
相同点:两种方式都需要重写run(),将线程要执行的逻辑声明在run()中。

JDK5.0后新增的两种实现方式

方式三:实现Callable接口

1.创建一个实现Callable的实现类
2.实现call方法,将此线程需要执行的操作声明在call()中
3.创建Callable接口实现类的对象
4.将此Callable接口实现类的对象作为传递到FutureTask构造器中,创建FutureTask的对象
5.将FutureTask的对象作为参数传递到Thread类的构造器中,创建Thread对象,并调用start()
6.获取Callable中call方法的返回值

代码如下(示例):

//1.创建一个实现Callable的实现类
class NumThread implements Callable{
    
    
    //2.实现call方法,将此线程需要执行的操作声明在call()中
    @Override
    public Object call() throws Exception {
    
    
        int sum = 0;
        for (int i = 1; i <= 100; i++) {
    
    
            if(i % 2 == 0){
    
    
                System.out.println(i);
                sum += i;
            }
        }
        return sum;
    }
}


public class ThreadNew {
    
    
    public static void main(String[] args) {
    
    
        //3.创建Callable接口实现类的对象
        NumThread numThread = new NumThread();
        //4.将此Callable接口实现类的对象作为传递到FutureTask构造器中,创建FutureTask的对象
        FutureTask futureTask = new FutureTask(numThread);
        //5.将FutureTask的对象作为参数传递到Thread类的构造器中,创建Thread对象,并调用start()
        new Thread(futureTask).start();

        try {
    
    
            //6.获取Callable中call方法的返回值
            //get()返回值即为FutureTask构造器参数Callable实现类重写的call()的返回值。
            Object sum = futureTask.get();
            System.out.println("总和为:" + sum);
        } catch (InterruptedException e) {
    
    
            e.printStackTrace();
        } catch (ExecutionException e) {
    
    
            e.printStackTrace();
        }
    }

}

如何理解实现Callable接口的方式创建多线程比实现Runnable接口创建多线程方式强大?

  1. call()可以返回值的。
  2. call()可以抛出异常,被外面的操作捕获,获取异常的信息
  3. Callable是支持泛型的

方式四:使用线程池

1.提供指定线程数量的线程池
2.执行指定的线程的操作(需要提供实现Runnable接口或Callable接口实现类的对象)
3.关闭连接池
代码如下(示例):

class NumberThread implements Runnable{
    
    

    @Override
    public void run() {
    
    
        for(int i = 0;i <= 100;i++){
    
    
            if(i % 2 == 0){
    
    
                System.out.println(Thread.currentThread().getName() + ": " + i);
            }
        }
    }
}

class NumberThread1 implements Runnable{
    
    

    @Override
    public void run() {
    
    
        for(int i = 0;i <= 100;i++){
    
    
            if(i % 2 != 0){
    
    
                System.out.println(Thread.currentThread().getName() + ": " + i);
            }
        }
    }
}

public class ThreadPool {
    
    

    public static void main(String[] args) {
    
    
    
        //1. 提供指定线程数量的线程池
        ExecutorService service = Executors.newFixedThreadPool(10);
        ThreadPoolExecutor service1 = (ThreadPoolExecutor) service;
        //设置线程池的属性
//        System.out.println(service.getClass());
//        service1.setCorePoolSize(15);
//        service1.setKeepAliveTime();


        //2.执行指定的线程的操作。需要提供实现Runnable接口或Callable接口实现类的对象
        service.execute(new NumberThread());//适合适用于Runnable
        service.execute(new NumberThread1());//适合适用于Runnable

//        service.submit(Callable callable);//适合使用于Callable
        //3.关闭连接池
        service.shutdown();
    }

}

说明:
好处:
1.提高响应速度(减少了创建新线程的时间)
2.降低资源消耗(重复利用线程池中线程,不需要每次都创建)
3.便于线程管理
corePoolSize:核心池的大小
maximumPoolSize:最大线程数
keepAliveTime:线程没任务时最多保持多长时间后会终止


Thread类中的常用的方法:

  1. start():启动当前线程;调用当前线程的run()
  2. run(): 通常需要重写Thread类中的此方法,将创建的线程要执行的操作声明在此方法中
  3. currentThread():静态方法,返回执行当前代码的线程
  4. getName():获取当前线程的名字
  5. setName():设置当前线程的名字
  6. yield():释放当前cpu的执行权
  7. join():在线程a中调用线程b的join(),此时线程a就进入阻塞状态,直到线程b完全执行完以后,线程a才结束阻塞状态。
  8. stop():已过时。当执行此方法时,强制结束当前线程。
  9. sleep(long millitime):让当前线程“睡眠”指定的millitime毫秒。在指定的millitime毫秒时间内,当前线程是阻塞状态。
  10. isAlive():判断当前线程是否存活

线程的优先级:

MAX_PRIORITY:10
MIN _PRIORITY:1
NORM_PRIORITY:5 -->默认优先级
2.如何获取和设置当前线程的优先级:
getPriority():获取线程的优先级
setPriority(int p):设置线程的优先级

说明:高优先级的线程要抢占低优先级线程cpu的执行权。但是只是从概率上讲,高优先级的线程高概率的情况下被执行。并不意味着只当高优先级的线程执行完以后,低优先级的线程才执行。

线程通信:wait() / notify() / notifyAll() :此三个方法定义在Object类中的。

线程的安全问题

出现的原因

当某个线程执行的过程中,尚未操作完成时,其他线程参与进来,产生了错误的数据。若让当前线程“睡眠(sleep(long millitime))”的时间越长,出现这类情况的概率往往越大。这就是线程安全问题。
例如在同一个电影院,有三个售票窗口同时卖同一场电影的票(每张电影票上会打印唯一的流水号,以显示卖的是第几张票),若三个售票窗口同时卖票,就有可能会出现同一个流水号的情况。

解决方法

在Java中,我们通过同步机制,来解决线程的安全问题。

方式一:同步代码块

synchronized(同步监视器){
    
    
      //需要被同步的代码

   }

说明:
1.操作共享数据的代码,即为需要被同步的代码。 -->不能包含代码多了,也不能包含代码少了。
2.共享数据:多个线程共同操作的变量。比如:ticket就是共享数据。
3.同步监视器,俗称:锁。任何一个类的对象,都可以充当锁。
要求:多个线程必须要共用同一把锁。

  • 补充:在实现Runnable接口创建多线程的方式中,我们可以考虑使用this充当同步监视器。
    在继承Thread类创建多线程的方式中,慎用this充当同步监视器,考虑使用当前类充当同步监视器。

方式二:同步方法

在实现多线程的方法中加上synchronized锁,如

private synchronized void show(){
    
    }

如果操作共享数据的代码完整的声明在一个方法中,我们不妨将此方法声明同步的。

关于同步方法的总结:

  1. 同步方法仍然涉及到同步监视器,只是不需要我们显式的声明。
  2. 非静态的同步方法,同步监视器是:this
    静态的同步方法,同步监视器是:当前类本身

方式三:Lock锁 — JDK5.0新增

1.实例化ReentrantLock
2.调用锁定方法lock()
3.调用解锁方法:unlock()
代码如下(示例):

class Window implements Runnable{
    
    

    private int ticket = 100;
    //1.实例化ReentrantLock
    private ReentrantLock lock = new ReentrantLock();

    @Override
    public void run() {
    
    
        while(true){
    
    
            try{
    
    

                //2.调用锁定方法lock()
                lock.lock();

                if(ticket > 0){
    
    

                    try {
    
    
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
    
    
                        e.printStackTrace();
                    }

                    System.out.println(Thread.currentThread().getName() + ":售票,票号为:" + ticket);
                    ticket--;
                }else{
    
    
                    break;
                }
            }finally {
    
    
                //3.调用解锁方法:unlock()
                lock.unlock();
            }

        }
    }
}

synchronized 与 Lock的异同?

  • 相同:二者都可以解决线程安全问题
  • 不同:synchronized机制在执行完相应的同步代码以后,自动的释放同步监视器。 Lock需要手动的启动同步(lock(),同时结束同步也需要手动的实现(unlock())

使用的优先顺序:
Lock —> 同步代码块(已经进入了方法体,分配了相应资源 ) —> 同步方法(在方法体之外)

使用同步方式的利弊:
利:同步的方式,解决了线程的安全问题。
弊:操作同步代码时,只能一个线程参与,其他线程等待。相当于是一个单线程的过程,效率低。

死锁问题

概念:不同的线程分别占用对方需要的同步资源不放弃,都在等待对方放弃自己需要的同步资源,就形成了线程的死锁。
说明:出现死锁后,不会出现异常,不会出现提示,只是所的线程都处于阻塞状态,无法继续。
我们使用同步时,要避免出现死锁。
例如:

public static void main(String[] args) {
    
    

    StringBuffer s1 = new StringBuffer();
    StringBuffer s2 = new StringBuffer();


    new Thread(){
    
    
        @Override
        public void run() {
    
    

            synchronized (s1){
    
    

                s1.append("a");
                s2.append("1");

                try {
    
    
                    Thread.sleep(100);
                } catch (InterruptedException e) {
    
    
                    e.printStackTrace();
                }


                synchronized (s2){
    
    
                    s1.append("b");
                    s2.append("2");

                    System.out.println(s1);
                    System.out.println(s2);
                }


            }

        }
    }.start();


    new Thread(new Runnable() {
    
    
        @Override
        public void run() {
    
    
            synchronized (s2){
    
    

                s1.append("c");
                s2.append("3");

                try {
    
    
                    Thread.sleep(100);
                } catch (InterruptedException e) {
    
    
                    e.printStackTrace();
                }

                synchronized (s1){
    
    
                    s1.append("d");
                    s2.append("4");

                    System.out.println(s1);
                    System.out.println(s2);
                }


            }



        }
    }).start();


}

猜你喜欢

转载自blog.csdn.net/m0_50654102/article/details/114158661