pytorch官方文档(迁移学习)

本文参考pytorch官方文档迁移学习的计算机视觉教程
传送门:官方文档
中文翻译
蚂蚁和蜜蜂数据集

为什么要用到迁移学习呢?
我们这次使用的数据集是比较小的,大约 120 张训练图像,然后 每个类别有 75 个验证图像。 如果仅仅使用这些图片是达不到足够高的准确率的,因此我们可以把已经训练好的模型参数迁移过来进行训练,这样准确率就能大大提高了。

代码如下:

from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
from PIL import Image

plt.ion()

data_transforms = {
    
    
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'data/hymenoptera_data'
image_dataset = {
    
    x: datasets.ImageFolder(os.path.join(data_dir, x),
                                         data_transforms[x])
                 for x in ['train', 'val']}
dataloaders = {
    
    x: torch.utils.data.DataLoader(image_dataset[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {
    
    x: len(image_dataset[x]) for x in ['train', 'val']}
class_names = image_dataset['train'].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def imshow(inp, title=None):
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)
    # plt.savefig('save_img.png')
#
# inputs, classes = next(iter(dataloaders['train']))
#
# out = torchvision.utils.make_grid(inputs)
#
# imshow(out, title=[class_names[x] for x in classes])

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('_' * 10)

        for phase in ['train', 'val']:
            if phase == 'train':
                model.train()
            else:
                model.eval()

            running_loss = 0.0
            running_corrects = 0

            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                optimizer.zero_grad()

                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            if phase == 'train':
                scheduler.step()

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc
            ))

            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60
    ))
    print('Best val Acc: {:.4f}'.format(best_acc))

    model.load_state_dict(best_model_wts)
    return model

def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis('off')
                ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return

        model.train(mode=was_training)

model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)

model_ft = model_ft.to(device)

criterion = nn.CrossEntropyLoss()

optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25)

visualize_model(model_ft)

plt.ioff()
plt.show()

训练结果如下:
在这里插入图片描述
在这里插入图片描述

训练时间大约为31s,准确率为92.81%

我们可以冻结除最后一层之外的所有网络来提高运行速度。 通过设置requires_grad == False冻结参数,以便不在backward()中计算梯度。

model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False

num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)

model_conv = model_conv.to(device)

criterion = nn.CrossEntropyLoss()

optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

exp_lr_schedule = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)

model_conv = train_model(model_conv, criterion, optimizer_conv, exp_lr_schedule, num_epochs=25)

visualize_model(model_conv)

plt.ioff()
plt.show()

运行结果如下:

在这里插入图片描述

在这里插入图片描述
可以看出运行时间提高了很多,现在只用大约19s,准确率为96.73%

猜你喜欢

转载自blog.csdn.net/weixin_49305813/article/details/114141998