软件创新实验室:关于简单程序的简单逆向分析

声明

1)该文章部分内容整理自网上的资料,如不小心侵犯了大家的权益,还望海涵,并联系博主删除。

2)博主是萌新上路,文中如有不当之处,请各位大佬指出,共同进步,谢谢。

本博文以两道题目为例,初步体验通过对程序的逆向分析来增强自身对代码的理解和运用,提高编译和汇编能力。

题一:

从网站中下载下来一个easyre.exe文件,查壳,发现有壳,脱壳,
在这里插入图片描述

将脱壳后的程序扔进ida,发现主要函数,
主要函数

不难发现红框内的就是重点,通过for循环次数可知flag内容有12位字符串,

双击byte_402000
byte_402000
即可编写脚本,

# -*- coding:utf-8 -*-

v4 = [42,70,39,34,78,44,34,40,73,63,43,64]

//由于后半段字符串中包含双引号,为避免引发歧义,故后半段用单引号表示引用
model = r"}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)(" + chr(0x27) + r'&%$# !"'

pos = []

for i in v4:
    pos.append(model.find(chr(i))+1)
s = [chr(x + 1) for x in pos]
flag = ''.join(s)
print ('flag{'+flag+'}')

获得flag,flag{U9X_1S_W6@T?}。

题二:

从网站中下载来一个reverse_3.exe, 检查无壳,直接扔进ida进行反编译。

发现主函数_main_0

int __cdecl main_0(int argc, const char **argv, const char **envp)
{
    
    
  int v3; // eax
  const char *v4; // eax
  size_t v5; // eax
  signed int j; // [esp+DCh] [ebp-ACh]
  signed int i; // [esp+E8h] [ebp-A0h]
  signed int v9; // [esp+E8h] [ebp-A0h]
  char Dest[108]; // [esp+F4h] [ebp-94h]
  char Str; // [esp+160h] [ebp-28h]
  char v12; // [esp+17Ch] [ebp-Ch]

  for ( i = 0; i < 100; ++i )
  {
    
    
    if ( (unsigned int)i >= 0x64 )
      j____report_rangecheckfailure();
    Dest[i] = 0;
  }
  sub_41132F("please enter the flag:");
  sub_411375("%20s", &Str);
  v3 = j_strlen(&Str);
  v4 = (const char *)sub_4110BE((int)&Str, v3, (int)&v12);
  strncpy(Dest, v4, 0x28u);
  v9 = j_strlen(Dest);
  for ( j = 0; j < v9; ++j )
    Dest[j] += j;
  v5 = j_strlen(Dest);
  if ( !strncmp(Dest, Str2, v5) )
    sub_41132F("rigth flag!\n");
  else
    sub_41132F("wrong flag!\n");
  return 0;
}

仔细一看还是蛮简单的,主要经过三个步骤:

  • 先用str存储所输入的字符串,然后对str进行sub_4110BE加密。
  • 接着使用一个for循环进行变换。
  • 最后与str2比较,由此可知str2就是加密后的flag

str2字符串如下,

.data:0041A034 ; char Str2[]
.data:0041A034 Str2            db 'e3nifIH9b_C@n@dH',0 ; DATA XREF: _main_0+142↑o

sub_4110BE加密函数如下,

void *__cdecl sub_411AB0(char *a1, unsigned int a2, int *a3)
{
    
    
  int v4; // STE0_4
  int v5; // STE0_4
  int v6; // STE0_4
  int v7; // [esp+D4h] [ebp-38h]
  signed int i; // [esp+E0h] [ebp-2Ch]
  unsigned int v9; // [esp+ECh] [ebp-20h]
  int v10; // [esp+ECh] [ebp-20h]
  signed int v11; // [esp+ECh] [ebp-20h]
  void *Dst; // [esp+F8h] [ebp-14h]
  char *v13; // [esp+104h] [ebp-8h]

  if ( !a1 || !a2 )
    return 0;
  v9 = a2 / 3;
  if ( (signed int)(a2 / 3) % 3 )
    ++v9;
  v10 = 4 * v9;
  *a3 = v10;
  Dst = malloc(v10 + 1);
  if ( !Dst )
    return 0;
  j_memset(Dst, 0, v10 + 1);
  v13 = a1;
  v11 = a2;
  v7 = 0;
  while ( v11 > 0 )
  {
    
    
    byte_41A144[2] = 0;
    byte_41A144[1] = 0;
    byte_41A144[0] = 0;
    for ( i = 0; i < 3 && v11 >= 1; ++i )
    {
    
    
      byte_41A144[i] = *v13;
      --v11;
      ++v13;
    }
    if ( !i )
      break;
    switch ( i )
    {
    
    
      case 1:
        *((_BYTE *)Dst + v7) = aAbcdefghijklmn[(signed int)(unsigned __int8)byte_41A144[0] >> 2];
        v4 = v7 + 1;
        *((_BYTE *)Dst + v4++) = aAbcdefghijklmn[((byte_41A144[1] & 0xF0) >> 4) | 16 * (byte_41A144[0] & 3)];
        *((_BYTE *)Dst + v4++) = aAbcdefghijklmn[64];
        *((_BYTE *)Dst + v4) = aAbcdefghijklmn[64];
        v7 = v4 + 1;
        break;
      case 2:
        *((_BYTE *)Dst + v7) = aAbcdefghijklmn[(signed int)(unsigned __int8)byte_41A144[0] >> 2];
        v5 = v7 + 1;
        *((_BYTE *)Dst + v5++) = aAbcdefghijklmn[((byte_41A144[1] & 0xF0) >> 4) | 16 * (byte_41A144[0] & 3)];
        *((_BYTE *)Dst + v5++) = aAbcdefghijklmn[((byte_41A144[2] & 0xC0) >> 6) | 4 * (byte_41A144[1] & 0xF)];
        *((_BYTE *)Dst + v5) = aAbcdefghijklmn[64];
        v7 = v5 + 1;
        break;
      case 3:
        *((_BYTE *)Dst + v7) = aAbcdefghijklmn[(signed int)(unsigned __int8)byte_41A144[0] >> 2];
        v6 = v7 + 1;
        *((_BYTE *)Dst + v6++) = aAbcdefghijklmn[((byte_41A144[1] & 0xF0) >> 4) | 16 * (byte_41A144[0] & 3)];
        *((_BYTE *)Dst + v6++) = aAbcdefghijklmn[((byte_41A144[2] & 0xC0) >> 6) | 4 * (byte_41A144[1] & 0xF)];
        *((_BYTE *)Dst + v6) = aAbcdefghijklmn[byte_41A144[2] & 0x3F];
        v7 = v6 + 1;
        break;
    }
  }
  *((_BYTE *)Dst + v7) = 0;
  return Dst;
}

aAbcdefghijklmn函数进行查看,

.rdata:00417B30 aAbcdefghijklmn db 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='
.rdata:00417B30                                         ; DATA XREF: .text:004117E8↑o
.rdata:00417B30                                         ; .text:00411827↑o ...

不难发现这是base64加密,因此只需解密即可。

编写脚本,

import base64

str1 = 'e3nifIH9b_C@n@dH'
x = ''
flag = ''

for j in range(0, len(str1)):
    x += chr(ord(str1[j]) - j)

flag = base64.b64decode(x)
flag = flag.decode('ASCII')
print(flag)

运行结果,

{
    
    i_l0ve_you}

得flag,flag{i_l0ve_you}

总结

通过对简单程序的简单逆向,更加深入了解程序运行的原理,能够使程序员对所学知识更加融会贯通,以及有新的收获。

猜你喜欢

转载自blog.csdn.net/weixin_46263782/article/details/108920024