图解Linux内核链表

介绍

本篇重点解析Linux内核源码中链表这一数据结构,值得注意的是,内核中的链表不是将数据内嵌到链表中,而是把链表内嵌到数据对象中

本文将以图解的方式剖析这一经典的数据结构。

说明

由于linux/list.h较长,时间原因,本篇无法一次性写完,望各位理解,本篇将持续更新,如有问题,欢迎评论区批评指出。

函数内核源码及图解

list_head定义及初始化

/*
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
	struct list_head name = LIST_HEAD_INIT(name)

static inline void INIT_LIST_HEAD(struct list_head *list)
{
    
    
	list->next = list;
	list->prev = list;
}

通过一系列宏函数来进行结构体的定义,由于是双向链表,包含前向指针和后向指针,但是无数据域,可以很方便的把链表内嵌到数据对象中。
在这里插入图片描述
LIST_HEAD(name)包含创建和初始化的过程,而INIT_LIST_HEAD仅做初始化,所谓初始化,就是将该结点的前向指针和后向指针都指向自己。
如下如所示:
在这里插入图片描述

list_del:

/**
 * list_del - deletes entry from list.
 * @entry: the element to delete from the list.
 * Note: list_empty() on entry does not return true after this, the entry is
 * in an undefined state.
 */
#ifndef CONFIG_DEBUG_LIST
static inline void __list_del_entry(struct list_head *entry)
{
    
    
	__list_del(entry->prev, entry->next);
}

static inline void list_del(struct list_head *entry)
{
    
    
	__list_del(entry->prev, entry->next);
	entry->next = LIST_POISON1;
	entry->prev = LIST_POISON2;
}
#else
extern void __list_del_entry(struct list_head *entry);
extern void list_del(struct list_head *entry);
#endif

在这里插入图片描述
在这里插入图片描述

list_del_init:

/**
 * list_del_init - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 */
static inline void list_del_init(struct list_head *entry)
{
    
    
	__list_del_entry(entry);
	INIT_LIST_HEAD(entry);
}

在这里插入图片描述

list_replace:

/**
 * list_replace - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static inline void list_replace(struct list_head *old,
				struct list_head *new)
{
    
    
	new->next = old->next;
	new->next->prev = new;
	new->prev = old->prev;
	new->prev->next = new;
}

在这里插入图片描述
在这里插入图片描述

list_replace_init:

static inline void list_replace_init(struct list_head *old,
					struct list_head *new)
{
    
    
	list_replace(old, new);
	INIT_LIST_HEAD(old);
}

在这里插入图片描述

list_move:

/**
 * list_move - delete from one list and add as another's head
 * @list: the entry to move
 * @head: the head that will precede our entry
 */
static inline void list_move(struct list_head *list, struct list_head *head)
{
    
    
	__list_del_entry(list);
	list_add(list, head);
}

在这里插入图片描述

在这里插入图片描述

list_move_tail:

/**
 * list_move_tail - delete from one list and add as another's tail
 * @list: the entry to move
 * @head: the head that will follow our entry
 */
static inline void  list_move_tail(struct list_head *list,
				  struct list_head *head)
{
    
    
	__list_del_entry(list);
	list_add_tail(list, head);
}

在这里插入图片描述

list_is_last

/**
 * list_is_last - tests whether @list is the last entry in list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static inline int list_is_last(const struct list_head *list,
				const struct list_head *head)
{
    
    
	return list->next == head;
}

在这里插入图片描述

list_empty:

/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static inline int list_empty(const struct list_head *head)
{
    
    
	return head->next == head;
}

在这里插入图片描述

list_empty_careful:

/**
 * list_empty_careful - tests whether a list is empty and not being modified
 * @head: the list to test
 *
 * Description:
 * tests whether a list is empty _and_ checks that no other CPU might be
 * in the process of modifying either member (next or prev)
 *
 * NOTE: using list_empty_careful() without synchronization
 * can only be safe if the only activity that can happen
 * to the list entry is list_del_init(). Eg. it cannot be used
 * if another CPU could re-list_add() it.
 */
static inline int list_empty_careful(const struct list_head *head)
{
    
    
	struct list_head *next = head->next;
	return (next == head) && (next == head->prev);
}

先copy一下当前的head->next,这样既能发现当前的head->next的指向,又不影响别的CPU对其进行更改,然后对copy下来的next进行一系列的判断 :(next == head) && (next == head->prev);
在这里插入图片描述
注意:只有在列表条目上发生的唯一活动是list_del_init()时,使用list_empty_careful()而不进行同步才安全。如果另一个CPU可以重新list_add()它,则不能使用它,需要加锁同步。

list_rotate_left:

/**
 * list_rotate_left - rotate the list to the left
 * @head: the head of the list
 */
static inline void list_rotate_left(struct list_head *head)
{
    
    
	struct list_head *first;

	if (!list_empty(head)) {
    
    
		first = head->next;
		list_move_tail(first, head);
	}
}

该函数将头节点右侧的第一个结点搬移到头结点的左侧,其它的结点顺序后移。
在这里插入图片描述
在这里插入图片描述

list_is_singular:

/**
 * list_is_singular - tests whether a list has just one entry.
 * @head: the list to test.
 */
static inline int list_is_singular(const struct list_head *head)
{
    
    
	return !list_empty(head) && (head->next == head->prev);
}

在这里插入图片描述

/**
 * list_cut_position - cut a list into two
 * @list: a new list to add all removed entries
 * @head: a list with entries
 * @entry: an entry within head, could be the head itself
 *	and if so we won't cut the list(head中的一个条目,可以是head本身,如果是这样,我们就不会删除列表)

 
 * This helper moves the initial part of @head, up to and
 * including @entry, from @head to @list. You should
 * pass on @entry an element you know is on @head. @list
 * should be an empty list or a list you do not care about
 * losing its data.
 */
static inline void list_cut_position(struct list_head *list,
		struct list_head *head, struct list_head *entry)
{
    
    
	if (list_empty(head))
		return;
	if (list_is_singular(head) &&
		(head->next != entry && head != entry))
		return;
	if (entry == head)
		INIT_LIST_HEAD(list);
	else
		__list_cut_position(list, head, entry);
}

static inline void __list_splice(const struct list_head *list,
				 struct list_head *prev,
				 struct list_head *next)
{
    
    
	struct list_head *first = list->next;
	struct list_head *last = list->prev;

	first->prev = prev;
	prev->next = first;

	last->next = next;
	next->prev = last;
}

这个函数将一个链表切成两个,连接head和entry形成一个cutline,从head的下一个开始直到包含entry为止,将list作为拆分出来的那一部分的表头。

  • 您应该向entry这个形参传递一个您已知的位于head上的元素。
  • 因为最终list会成为拆分出来的那一部分的表头,所以list应该是一个空的list或者是一个您不关心数据是否丢失的结点。
  • 在这里插入图片描述
    在这里插入图片描述

list_splice:

/**
 * list_splice - join two lists, this is designed for stacks
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice(const struct list_head *list,
				struct list_head *head)
{
    
    
	if (!list_empty(list))
		__list_splice(list, head, head->next);
}

在这里插入图片描述

list_splice_tail:

/**
 * list_splice_tail - join two lists, each list being a queue
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice_tail(struct list_head *list,
				struct list_head *head)
{
    
    
	if (!list_empty(list))
		__list_splice(list, head->prev, head);
}

在这里插入图片描述

list_splice_init:

/**
 * list_splice_init - join two lists and reinitialise the emptied list.
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * The list at @list is reinitialised
 */
static inline void list_splice_init(struct list_head *list,
				    struct list_head *head)
{
    
    
	if (!list_empty(list)) {
    
    
		__list_splice(list, head, head->next);
		INIT_LIST_HEAD(list);
	}
}

在这里插入图片描述

list_splice_tail_init:

/**
 * list_splice_tail_init - join two lists and reinitialise the emptied list
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * Each of the lists is a queue.
 * The list at @list is reinitialised
 */
static inline void list_splice_tail_init(struct list_head *list,
					 struct list_head *head)
{
    
    
	if (!list_empty(list)) {
    
    
		__list_splice(list, head->prev, head);
		INIT_LIST_HEAD(list);
	}
}

在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/qq_28816873/article/details/110236939