AESECB加密算法 C 语言代码实现

文章目录

AESECB C语言代码实现

1. aes.c

/*

This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.

The implementation is verified against the test vectors in:
 National Institute of Standards and Technology Special Publication 800-38A 2001 ED

ECB-AES128
----------

 plain-text:
   6bc1bee22e409f96e93d7e117393172a
   ae2d8a571e03ac9c9eb76fac45af8e51
   30c81c46a35ce411e5fbc1191a0a52ef
   f69f2445df4f9b17ad2b417be66c3710

 key:
   2b7e151628aed2a6abf7158809cf4f3c

 resulting cipher
   3ad77bb40d7a3660a89ecaf32466ef97
   f5d3d58503b9699de785895a96fdbaaf
   43b1cd7f598ece23881b00e3ed030688
   7b0c785e27e8ad3f8223207104725dd4


NOTE:   String length must be evenly divisible by 16byte (str_len % 16 == 0)
       You should pad the end of the string with zeros if this is not the case.
       For AES192/256 the key size is proportionally larger.

*/


/*****************************************************************************/
/* Includes:                                                                 */
/*****************************************************************************/
#include <string.h> // CBC mode, for memset
#include "../inc/aes.h"

/*****************************************************************************/
/* Defines:                                                                  */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4

#if defined(AES256) && (AES256 == 1)
   #define Nk 8
   #define Nr 14
#elif defined(AES192) && (AES192 == 1)
   #define Nk 6
   #define Nr 12
#else
   #define Nk 4        // The number of 32 bit words in a key.
   #define Nr 10       // The number of rounds in AES Cipher.
#endif

// jcallan@github points out that declaring Multiply as a function
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3
#ifndef MULTIPLY_AS_A_FUNCTION
 #define MULTIPLY_AS_A_FUNCTION 0
#endif




/*****************************************************************************/
/* Private variables:                                                        */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];



// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {
    
    
 //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F
 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };

static const uint8_t rsbox[256] = {
    
    
 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };

// The round constant word array, Rcon[i], contains the values given by
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon[11] = {
    
    
 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };

/*
* Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
* that you can remove most of the elements in the Rcon array, because they are unused.
*
* From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
*
* "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed),
*  up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
*/


/*****************************************************************************/
/* Private functions:                                                        */
/*****************************************************************************/
/*
static uint8_t getSBoxValue(uint8_t num)
{
 return sbox[num];
}
*/
#define getSBoxValue(num) (sbox[(num)])
/*
static uint8_t getSBoxInvert(uint8_t num)
{
 return rsbox[num];
}
*/
#define getSBoxInvert(num) (rsbox[(num)])

// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)
{
    
    
 unsigned i, j, k;
 uint8_t tempa[4]; // Used for the column/row operations

 // The first round key is the key itself.
 for (i = 0; i < Nk; ++i)
 {
    
    
   RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
   RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
   RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
   RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
 }

 // All other round keys are found from the previous round keys.
 for (i = Nk; i < Nb * (Nr + 1); ++i)
 {
    
    
   {
    
    
     k = (i - 1) * 4;
     tempa[0]=RoundKey[k + 0];
     tempa[1]=RoundKey[k + 1];
     tempa[2]=RoundKey[k + 2];
     tempa[3]=RoundKey[k + 3];

   }

   if (i % Nk == 0)
   {
    
    
     // This function shifts the 4 bytes in a word to the left once.
     // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]

     // Function RotWord()
     {
    
    
       const uint8_t u8tmp = tempa[0];
       tempa[0] = tempa[1];
       tempa[1] = tempa[2];
       tempa[2] = tempa[3];
       tempa[3] = u8tmp;
     }

     // SubWord() is a function that takes a four-byte input word and
     // applies the S-box to each of the four bytes to produce an output word.

     // Function Subword()
     {
    
    
       tempa[0] = getSBoxValue(tempa[0]);
       tempa[1] = getSBoxValue(tempa[1]);
       tempa[2] = getSBoxValue(tempa[2]);
       tempa[3] = getSBoxValue(tempa[3]);
     }

     tempa[0] = tempa[0] ^ Rcon[i/Nk];
   }
#if defined(AES256) && (AES256 == 1)
   if (i % Nk == 4)
   {
    
    
     // Function Subword()
     {
    
    
       tempa[0] = getSBoxValue(tempa[0]);
       tempa[1] = getSBoxValue(tempa[1]);
       tempa[2] = getSBoxValue(tempa[2]);
       tempa[3] = getSBoxValue(tempa[3]);
     }
   }
#endif
   j = i * 4; k=(i - Nk) * 4;
   RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
   RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
   RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
   RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
 }
}

void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key)
{
    
    
 KeyExpansion(ctx->RoundKey, key);
}
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv)
{
    
    
 KeyExpansion(ctx->RoundKey, key);
 memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv)
{
    
    
 memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
#endif

// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey)
{
    
    
 uint8_t i,j;
 for (i = 0; i < 4; ++i)
 {
    
    
   for (j = 0; j < 4; ++j)
   {
    
    
     (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
   }
 }
}

// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(state_t* state)
{
    
    
 uint8_t i, j;
 for (i = 0; i < 4; ++i)
 {
    
    
   for (j = 0; j < 4; ++j)
   {
    
    
     (*state)[j][i] = getSBoxValue((*state)[j][i]);
   }
 }
}

// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(state_t* state)
{
    
    
 uint8_t temp;

 // Rotate first row 1 columns to left
 temp           = (*state)[0][1];
 (*state)[0][1] = (*state)[1][1];
 (*state)[1][1] = (*state)[2][1];
 (*state)[2][1] = (*state)[3][1];
 (*state)[3][1] = temp;

 // Rotate second row 2 columns to left
 temp           = (*state)[0][2];
 (*state)[0][2] = (*state)[2][2];
 (*state)[2][2] = temp;

 temp           = (*state)[1][2];
 (*state)[1][2] = (*state)[3][2];
 (*state)[3][2] = temp;

 // Rotate third row 3 columns to left
 temp           = (*state)[0][3];
 (*state)[0][3] = (*state)[3][3];
 (*state)[3][3] = (*state)[2][3];
 (*state)[2][3] = (*state)[1][3];
 (*state)[1][3] = temp;
}

static uint8_t xtime(uint8_t x)
{
    
    
 return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}

// MixColumns function mixes the columns of the state matrix
static void MixColumns(state_t* state)
{
    
    
 uint8_t i;
 uint8_t Tmp, Tm, t;
 for (i = 0; i < 4; ++i)
 {
    
    
   t   = (*state)[i][0];
   Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
   Tm  = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm);  (*state)[i][0] ^= Tm ^ Tmp ;
   Tm  = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm);  (*state)[i][1] ^= Tm ^ Tmp ;
   Tm  = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm);  (*state)[i][2] ^= Tm ^ Tmp ;
   Tm  = (*state)[i][3] ^ t ;              Tm = xtime(Tm);  (*state)[i][3] ^= Tm ^ Tmp ;
 }
}

// Multiply is used to multiply numbers in the field GF(2^8)
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
//       The compiler seems to be able to vectorize the operation better this way.
//       See https://github.com/kokke/tiny-AES-c/pull/34
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{
    
    
 return (((y & 1) * x) ^
      ((y>>1 & 1) * xtime(x)) ^
      ((y>>2 & 1) * xtime(xtime(x))) ^
      ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
      ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
 }
#else
#define Multiply(x, y)                                \
     (  ((y & 1) * x) ^                              \
     ((y>>1 & 1) * xtime(x)) ^                       \
     ((y>>2 & 1) * xtime(xtime(x))) ^                \
     ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^         \
     ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))   \

#endif

#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(state_t* state)
{
    
    
 int i;
 uint8_t a, b, c, d;
 for (i = 0; i < 4; ++i)
 {
    
    
   a = (*state)[i][0];
   b = (*state)[i][1];
   c = (*state)[i][2];
   d = (*state)[i][3];

   (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
   (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
   (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
   (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
 }
}


// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(state_t* state)
{
    
    
 uint8_t i, j;
 for (i = 0; i < 4; ++i)
 {
    
    
   for (j = 0; j < 4; ++j)
   {
    
    
     (*state)[j][i] = getSBoxInvert((*state)[j][i]);
   }
 }
}

static void InvShiftRows(state_t* state)
{
    
    
 uint8_t temp;

 // Rotate first row 1 columns to right
 temp = (*state)[3][1];
 (*state)[3][1] = (*state)[2][1];
 (*state)[2][1] = (*state)[1][1];
 (*state)[1][1] = (*state)[0][1];
 (*state)[0][1] = temp;

 // Rotate second row 2 columns to right
 temp = (*state)[0][2];
 (*state)[0][2] = (*state)[2][2];
 (*state)[2][2] = temp;

 temp = (*state)[1][2];
 (*state)[1][2] = (*state)[3][2];
 (*state)[3][2] = temp;

 // Rotate third row 3 columns to right
 temp = (*state)[0][3];
 (*state)[0][3] = (*state)[1][3];
 (*state)[1][3] = (*state)[2][3];
 (*state)[2][3] = (*state)[3][3];
 (*state)[3][3] = temp;
}
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)

// Cipher is the main function that encrypts the PlainText.
static void Cipher(state_t* state, const uint8_t* RoundKey)
{
    
    
 uint8_t round = 0;

 // Add the First round key to the state before starting the rounds.
 AddRoundKey(0, state, RoundKey);

 // There will be Nr rounds.
 // The first Nr-1 rounds are identical.
 // These Nr rounds are executed in the loop below.
 // Last one without MixColumns()
 for (round = 1; ; ++round)
 {
    
    
   SubBytes(state);
   ShiftRows(state);
   if (round == Nr) {
    
    
     break;
   }
   MixColumns(state);
   AddRoundKey(round, state, RoundKey);
 }
 // Add round key to last round
 AddRoundKey(Nr, state, RoundKey);
}

#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
static void InvCipher(state_t* state, const uint8_t* RoundKey)
{
    
    
 uint8_t round = 0;

 // Add the First round key to the state before starting the rounds.
 AddRoundKey(Nr, state, RoundKey);

 // There will be Nr rounds.
 // The first Nr-1 rounds are identical.
 // These Nr rounds are executed in the loop below.
 // Last one without InvMixColumn()
 for (round = (Nr - 1); ; --round)
 {
    
    
   InvShiftRows(state);
   InvSubBytes(state);
   AddRoundKey(round, state, RoundKey);
   if (round == 0) {
    
    
     break;
   }
   InvMixColumns(state);
 }

}
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)

/*****************************************************************************/
/* Public functions:                                                         */
/*****************************************************************************/
#if defined(ECB) && (ECB == 1)


void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf)
{
    
    
 // The next function call encrypts the PlainText with the Key using AES algorithm.
 Cipher((state_t*)buf, ctx->RoundKey);
}

void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf)
{
    
    
 // The next function call decrypts the PlainText with the Key using AES algorithm.
 InvCipher((state_t*)buf, ctx->RoundKey);
}


#endif // #if defined(ECB) && (ECB == 1)





#if defined(CBC) && (CBC == 1)


static void XorWithIv(uint8_t* buf, const uint8_t* Iv)
{
    
    
 uint8_t i;
 for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size
 {
    
    
   buf[i] ^= Iv[i];
 }
}

void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t* buf, uint32_t length)
{
    
    
 uintptr_t i;
 uint8_t *Iv = ctx->Iv;
 for (i = 0; i < length; i += AES_BLOCKLEN)
 {
    
    
   XorWithIv(buf, Iv);
   Cipher((state_t*)buf, ctx->RoundKey);
   Iv = buf;
   buf += AES_BLOCKLEN;
 }
 /* store Iv in ctx for next call */
 memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
}

void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf,  uint32_t length)
{
    
    
 uintptr_t i;
 uint8_t storeNextIv[AES_BLOCKLEN];
 for (i = 0; i < length; i += AES_BLOCKLEN)
 {
    
    
   memcpy(storeNextIv, buf, AES_BLOCKLEN);
   InvCipher((state_t*)buf, ctx->RoundKey);
   XorWithIv(buf, ctx->Iv);
   memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);
   buf += AES_BLOCKLEN;
 }

}

#endif // #if defined(CBC) && (CBC == 1)



#if defined(CTR) && (CTR == 1)

/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length)
{
    
    
 uint8_t buffer[AES_BLOCKLEN];

 unsigned i;
 int bi;
 for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi)
 {
    
    
   if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */
   {
    
    

     memcpy(buffer, ctx->Iv, AES_BLOCKLEN);
     Cipher((state_t*)buffer,ctx->RoundKey);

     /* Increment Iv and handle overflow */
     for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi)
     {
    
    
   /* inc will overflow */
       if (ctx->Iv[bi] == 255)
   {
    
    
         ctx->Iv[bi] = 0;
         continue;
       }
       ctx->Iv[bi] += 1;
       break;
     }
     bi = 0;
   }

   buf[i] = (buf[i] ^ buffer[bi]);
 }
}

#endif // #if defined(CTR) && (CTR == 1)

2. aes.h

#ifndef _AES_H_
#define _AES_H_

#include <stdint.h>

// #define the macros below to 1/0 to enable/disable the mode of operation.
//
// CBC enables AES encryption in CBC-mode of operation.
// CTR enables encryption in counter-mode.
// ECB enables the basic ECB 16-byte block algorithm. All can be enabled simultaneously.

// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
#ifndef CBC
//  #define CBC 1
    #define CBC 0   // 2020-07-27 by cui
#endif

#ifndef ECB
  #define ECB 1
#endif

#ifndef CTR
//  #define CTR 1
    #define CTR 0   //2020-07-27 by cui
#endif


#define AES128 1
//#define AES192 1
//#define AES256 1

#define AES_BLOCKLEN 16 // Block length in bytes - AES is 128b block only

#if defined(AES256) && (AES256 == 1)
    #define AES_KEYLEN 32
    #define AES_keyExpSize 240
#elif defined(AES192) && (AES192 == 1)
    #define AES_KEYLEN 24
    #define AES_keyExpSize 208
#else
    #define AES_KEYLEN 16   // Key length in bytes
    #define AES_keyExpSize 176
#endif

struct AES_ctx
{
    
    
  uint8_t RoundKey[AES_keyExpSize];
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
  uint8_t Iv[AES_BLOCKLEN];
#endif
};

void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key);
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv);
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv);
#endif

#if defined(ECB) && (ECB == 1)
// buffer size is exactly AES_BLOCKLEN bytes; 
// you need only AES_init_ctx as IV is not used in ECB 
// NB: ECB is considered insecure for most uses
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf);
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf);

#endif // #if defined(ECB) && (ECB == !)


#if defined(CBC) && (CBC == 1)
// buffer size MUST be mutile of AES_BLOCKLEN;
// Suggest https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx via AES_init_ctx_iv() or AES_ctx_set_iv()
//        no IV should ever be reused with the same key 
void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);

#endif // #if defined(CBC) && (CBC == 1)


#if defined(CTR) && (CTR == 1)

// Same function for encrypting as for decrypting. 
// IV is incremented for every block, and used after encryption as XOR-compliment for output
// Suggesting https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx with AES_init_ctx_iv() or AES_ctx_set_iv()
//        no IV should ever be reused with the same key 
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);

#endif // #if defined(CTR) && (CTR == 1)


#endif // _AES_H_

3. 示例

/* 特别注意,本算法一次只能加密16个字节,多于16个字节的加解密需要分多次调用实现 */

struct AES_ctx aes_s;
uint8_t key[16] = {
    
    0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F};
uint8_t en_msg[16] = {
    
    0x31, 0x32, 0x33};	// 待加密的明文
uint8_t de_msg[16] = {
    
    0x31, 0x32, 0x33};	// 待解密的密文

AES_init_ctx(&aes_s, key);			// 初始化 AES
AES_ECB_encrypt(&aes_s, en_msg);	// 加密后的密文覆盖掉原有的 en_msg
AES_ECB_decrypt(&aes_s, en_msg);	// 解密后的明文覆盖掉原有的 de_msg
/* 特别注意,本算法一次只能加密16个字节,多于16个字节的加解密需要分多次调用实现 */

猜你喜欢

转载自blog.csdn.net/qq_36310253/article/details/109667381