tensorflow保存模型和调用训练模型



        训练完一个模型后,为了以后重复使用,通常我们需要对模型的结果进行保存。如果用Tensorflow去实现神经网络,所要保存的就是神经网络中的各项权重值。建议可以使用Saver类保存和加载模型的结果。

使用tf.train.Saver.save()方法保存模型

saver=tf.train.Saver()

Saver类用来保存和恢复变量

保存saver.save(sess,'save_path')

  • sess: 用于加载变量操作的会话。

  • save_path: 同保存模型是用到的的save_path参数。

    扫描二维码关注公众号,回复: 12046222 查看本文章

取值继续训练是saver.restore(sess,'save_path')

上代码:#载入数据集
mnist=input_data.read_data_sets("MNIST_data",one_hot=True)

#每个批次的大小
batch_size=100
#计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size

#定义俩个placedholder
x=tf.placeholder(tf.float32,[None,784])
y=tf.placeholder(tf.float32,[None,10])

#创建一个简单的神经网络
W=tf.Variable(tf.zeros([784,10]))
b=tf.Variable(tf.zeros([10]))
prediction=tf.nn.softmax(tf.matmul(x,W)+b)

#定义代价函数
loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
train_step=tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#初始化变量
init=tf.global_variables_initializer()
#结果存放在一个布尔型列表中
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))#将布尔型转化为32位浮点型
saver=tf.train.Saver()
with tf.Session()as sess:
    sess.run(init)
    for epoch in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys=mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
        acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print("Iter"+str(epoch)+",Testing Accuracy"+str(acc))
    #保存模型
    saver.save(sess,'net/my_net.ckpt')

#载入数据集
mnist=input_data.read_data_sets("MNIST_data",one_hot=True)

#每个批次的大小
batch_size=100
#计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size

#定义俩个placedholder
x=tf.placeholder(tf.float32,[None,784])
y=tf.placeholder(tf.float32,[None,10])

#创建一个简单的神经网络
W=tf.Variable(tf.zeros([784,10]))
b=tf.Variable(tf.zeros([10]))
prediction=tf.nn.softmax(tf.matmul(x,W)+b)

#定义代价函数
loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
train_step=tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#初始化变量
init=tf.global_variables_initializer()
#结果存放在一个布尔型列表中
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))#将布尔型转化为32位浮点型
saver=tf.train.Saver()
with tf.Session()as sess:
    sess.run(init)
    print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))
    saver.restore(sess,'net/my_net.ckpt')
    print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))

猜你喜欢

转载自blog.csdn.net/qq_38798147/article/details/80188595