JVM 从入门到精通(六)JVM运行时数据区——虚拟机栈

写在前面:我是「云祁」,一枚热爱技术、会写诗的大数据开发猿。昵称来源于王安石诗中一句 [ 云之祁祁,或雨于渊 ] ,甚是喜欢。


写博客一方面是对自己学习的一点点总结及记录,另一方面则是希望能够帮助更多对大数据感兴趣的朋友。如果你也对 数据中台、数据建模、数据分析以及Flink/Spark/Hadoop/数仓开发 感兴趣,可以关注我的动态 https://blog.csdn.net/BeiisBei ,让我们一起挖掘数据的价值~


每天都要进步一点点,生命不是要超越别人,而是要超越自己! (ง •_•)ง

一、虚拟机栈概述

1.1 虚拟机栈的背景

  • 由于跨平台性的设计,Java的指令都是根据栈来设计的 。不同平台CPU架构不同,所以不能设计为基于寄存器的。

  • 根据栈设计的优点是跨平台,指令集小,编译器容易实现,缺点是性能下降,实现同样的功能需要更多的指令

1.2 内存中的堆与栈

栈是运行时的单位,而堆是存储的单位。

在这里插入图片描述

  1. 栈解决程序的运行问题,即程序如何执行,或者说如何处理数据。堆解决的是数据存储的问题,即数据怎么放、放在哪儿。

  2. 一般来讲,对象主要都是放在堆空间的,是运行时数据区比较大的一块

  3. 栈空间存放基本数据类型的局部变量,以及引用数据类型的对象的引用

1.3 虚拟机栈的基本内容

  1. Java虚拟机栈(Java Virtual Machine Stack),早期也叫Java栈。 每个线程在创建时都会创建一个虚拟机栈,其内部保存一个个的栈帧(Stack Frame),对应这个一次次的Java方法调用。它是线程私有的。

在这里插入图片描述

  1. 生命周期和线程是一致的

  2. 栈是一种快速有效的分配存储方式,访问速度仅次于PC寄存器(程序计数器)

  3. 作用:主管Java程序的运行,它保存方法的局部变量、8种基本数据类型、对象的引用地址、部分结果,并参与方法的调用和返回

    局部变量:相较于成员变量(成员变量或称属性)

    基本数据变量:8种基本数据类型

    引用类型变量:类、数组、接口

  4. JVM直接对J ava栈的操作只有两个

    (1)每个方法执行,伴随着 进栈(入栈,压栈)

    (2)执行结束后的 出栈 工作
    在这里插入图片描述
    6.对于栈来说不存在垃圾回收问题,但是存在OOM异常

下面接着说Java虚拟机栈的异常。

1.4 栈中可能出现的异常

  1. Java虚拟机规范允许Java栈的大小是 动态的或者是固定不变的

  2. 如果采用固定大小的Java虚拟机栈,那每一个线程的Java虚拟机栈容量可以在线程创建的时候独立选定。

  3. 如果线程请求分配的栈容量超过Java虚拟机栈允许的最大容量,Java虚拟机将会抛出一个 StackOverFlowError异常

/**
 * 演示栈中的异常
 */
public class StackErrorTest {
    
    
    public static void main(String[] args) {
    
    
        main(args);
    }
}
  1. 如果Java虚拟机栈可以动态拓展,并且在尝试拓展的时候无法申请到足够的内存,或者在创建新的线程时没有足够的内存去创建对应的虚拟机栈,那java虚拟机将会抛出一个 OutOfMemoryError异常

1.5 设置栈的内存大小

  • 我们可以使用参数-Xss选项来设置线程的最大栈空间,栈的大小直接决定了函数调用的最大可达深度。 (IDEA设置方法:Run-EditConfigurations-VM options 填入指定栈的大小-Xss256k)。
-Xss1024m		// 栈内存为 1024MBS
-Xss1024k		// 栈内存为 1024KB
  • 设置线程的最大栈空间:256KB

在这里插入图片描述

/**
 * 演示栈中的异常
 *
 * 默认情况下:count 10818
 * 设置栈的大小: -Xss256k count 1872
 */
public class StackErrorTest {
    
    
    private static int count = 1;
    public static void main(String[] args) {
    
    
        System.out.println(count);
        count++;
        main(args);
    }
}
  • 递归 2471 次,栈内存溢出

在这里插入图片描述

二、栈的存储单位

2.1 Java虚拟机栈的存储结构和运行原理

栈存储什么?

  1. 每个线程都有自己的栈,栈中的数据都是以 栈帧 (Stack Frame)的格式存在

  2. 在这个线程上 正在执行的每个方法都对应各自的一个栈帧(Stack Frame)

  3. 栈帧是一个内存区块,是一个数据集,维系着方法执行过程中的各种数据信息

栈的运行原理

  1. JVM直接对Java栈的操作只有两个,就是对栈帧的 压栈和出栈,遵循先进后出/后进先出的和原则。

  2. 在一条活动线程中,一个时间点上,只会有一个活动的栈帧。即只有当前正在执行的方法的栈帧(栈顶栈帧)是有效的,这个栈帧被称为当前栈帧(Current Frame),与当前栈帧对应的方法就是当前方法(Current Frame)

  3. 执行引擎运行的所有字节码指令只针对当前栈帧进行操作

  4. 如果在该方法中调用了其他方法,对应的新的栈帧会被创建出来,放在栈的顶端,成为新的当前栈帧。

  5. 不同线程中所包含的栈帧是不允许相互引用的,即不可能在另一个栈帧中引用另外一个线程的栈帧

  6. 如果当前方法调用了其他方法,方法返回之际,当前栈帧会传回此方法的执行结果给前一个栈帧,接着,虚拟机会丢弃当前栈帧,使得前一个栈帧重新成为当前栈帧

  7. Java方法有两种返回函数的方式,一种是正常的函数返回,使用return指令;另外一种是抛出异常。不管使用哪种方式,都会导致栈帧被弹出

在这里插入图片描述
代码示例:

  • 代码
/**
 * 栈帧
 */
public class StackFrameTest {
    
    
    public static void main(String[] args) {
    
    
        StackFrameTest test = new StackFrameTest();
        test.method1();
        //输出 method1()和method2()都作为当前栈帧出现了两次,method3()一次
//        method1()开始执行。。。
//        method2()开始执行。。。
//        method3()开始执行。。。
//        method3()执行结束。。。
//        method2()执行结束。。。
//        method1()执行结束。。。
    }

    public void method1(){
    
    
        System.out.println("method1()开始执行。。。");
        method2();
        System.out.println("method1()执行结束。。。");
    }

    public int method2(){
    
    
        System.out.println("method2()开始执行。。。");
        int i = 10;
        int m = (int) method3();
        System.out.println("method2()执行结束。。。");
        return i+m;
    }

    public double method3(){
    
    
        System.out.println("method3()开始执行。。。");
        double j = 20.0;
        System.out.println("method3()执行结束。。。");
        return j;
    }

}
  • 先执行的函数,最后执行结束
method1()开始执行...
method2()开始执行...
method3()开始执行...
method3()即将结束...
method2()即将结束...
method1()执行结束...
  • 反编译,可以看到每个方法后面都带有 return 语句或者 ireturn 语句
  public void method1();
    descriptor: ()V
    flags: ACC_PUBLIC
    Code:
      stack=2, locals=1, args_size=1
         0: getstatic     #5                  // Field java/lang/System.out:Ljava/io/PrintStream;
         3: ldc           #6                  // String method1()开始执行...
         5: invokevirtual #7                  // Method java/io/PrintStream.println:(Ljava/lang/String;)V
         8: aload_0
         9: invokevirtual #8                  // Method method2:()I
        12: pop
        13: getstatic     #5                  // Field java/lang/System.out:Ljava/io/PrintStream;
        16: ldc           #9                  // String method1()执行结束...
        18: invokevirtual #7                  // Method java/io/PrintStream.println:(Ljava/lang/String;)V
        21: return
      LineNumberTable:
        line 16: 0
        line 17: 8
        line 18: 13
        line 19: 21
      LocalVariableTable:
        Start  Length  Slot  Name   Signature
            0      22     0  this   Lcom/atguigu/java1/StackFrameTest;

2.2 栈帧的内部结构

每个栈帧中存储着

  1. 局部变量表(Local Variables)

  2. 操作数栈(Operand Stack)(或表达式栈)

  3. 动态链接(Dynamic Linking)(或执行"运行时常量池"的方法引用)----深入理解Java多态特性必读!!

  4. 方法返回地址(Return Adress)(或方法正常退出或者异常退出的定义)

  5. 一些附加信息

在这里插入图片描述
其中部分参考书目上,称方法返回地址、动态链接、附加信息为帧数据区。

在这里插入图片描述
并行每个线程下的栈都是私有的,因此每个线程都有自己各自的栈,并且每个栈里面都有很多栈帧,栈帧的大小主要由局部变量表 和 操作数栈决定的。

在这里插入图片描述

三、局部变量表(Local Variables)

  1. 局部变量表也被称之为 局部变量数组或本地变量表

  2. 定义为一个数字数组,主要用于 存储方法参数和定义在方法体内的局部变量,这些数据类型包括各类基本数据类型、对象引用(reference),以及returnAddressleixing

  3. 由于局部变量表是建立在线程的栈上,是线程私有的数据,因此 不存在数据安全问题

  4. 局部变量表所需的容量大小是在编译期确定下来的,并保存在方法的Code属性的maximum local variables数据项中。在方法运行期间是不会改变局部变量表的大小的。

  5. 方法嵌套调用的次数由栈的大小决定。一般来说,栈越大,方法嵌套调用次数越多。

    1. 对一个函数而言,他的参数和局部变量越多,使得局部变量表膨胀,它的栈帧就越大,以满足方法调用所需传递的信息增大的需求。
    2. 进而函数调用就会占用更多的栈空间。
  6. 局部变量表中的变量只在当前方法调用中有效。

    • 在方法执行时,虚拟机通过使用局部变量表完成参数值到参数变量列表的传递过程。
    • 当方法调用结束后,随着方法栈帧的销毁,局部变量表也会随之销毁。

3.1 查看帧的局部变量表

利用javap命令对字节码文件进行解析查看main()方法对应栈帧的局部变量表,如图:
在这里插入图片描述
也可以在IDEA 上安装jclasslib byte viewcoder插件查看方法内部字节码信息剖析,以main()方法为例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 变量槽slot的理解与演示

  1. 参数值的存放总是 从局部变量数组的index0开始,到数组长度-1的索引结束

  2. 局部变量表,最基本的存储单元是Slot(变量槽)

  3. 局部变量表中存放编译期可知的各种基本数据类型(8种),引用类型(reference),returnAddress类型的变量。

  4. 在局部变量表里,32位以内的类型只占用一个slot(包括returnAddress类型),64位的类型(long和double)占用两个slot。

    byte、short、char、float在存储前被转换为int,boolean也被转换为int,0表示false,非0表示true;

    long和double则占据两个slot。

在这里插入图片描述

  1. JVM会为局部变量表中的每一个slot都分配一个访问索引,通过这个索引即可成功访问到局部变量表中指定的局部变量值

  2. 当一个实例方法被调用的时候,它的方法参数和方法体内部定义的局部变量将会按照声明顺序被复制到局部变量表中的每一个slot上

  3. 如果需要访问局部变量表中一个64bit的局部变量值时,只需要使用前一个索引即可。(比如:访问long或者double类型变量)

  4. 如果当前帧是由 构造方法或者实例方法 创建的(意思是当前帧所对应的方法是构造器方法或者是普通的实例方法),那么该对象引用this将会存放在index为0的slot处,其余的参数按照参数表顺序排列。

  5. 静态方法中不能引用this,是因为静态方法所对应的栈帧当中的局部变量表中不存在this

在这里插入图片描述

示例代码:

public class LocalVariablesTest {
    
    

    private int count = 1;
    //静态方法不能使用this
    public static void testStatic(){
    
    
        //编译错误,因为this变量不存在与当前方法的局部变量表中!!!
        System.out.println(this.count);
    }
}

3.3 slot的重复利用

栈帧中的局部变量表中的槽位是可以重复利用的,如果一个局部变量过了其作用域,那么在其作用域之后申明的新的局部变量就很有可能会复用过期局部变量的槽位,从而达到节省资源的目的。

private void test2() {
    
    
        int a = 0;
        {
    
    
            int b = 0;
            b = a+1;
        }
        //变量c使用之前以及经销毁的变量b占据的slot位置
        int c = a+1;
    }

上述代码对应的栈帧中局部变量表中一共有多少个slot,或者说局部变量表的长度是几?

答案是3

变量b的作用域是

{
    
    
     int b = 0;
     b = a+1;
}

this占0号、a单独占1个槽号、c重复使用了b的槽号

3.4 静态变量与局部变量的对比及小结

变量的分类:

  • 按照数据类型分:

①基本数据类型

②引用数据类型

  • 按照在类中声明的位置分:

①成员变量:在使用前,都经历过默认初始化赋值

  • static修饰:类变量:类加载链接的准备preparation阶段给类变量默认赋0值——>初始化阶段initialization给类变量显式赋值即静态代码块赋值;
  • 不被static修饰:实例变量:随着对象的创建,会在堆空间分配实例变量空间,并进行默认赋值

②局部变量:在使用前,必须要进行显式赋值的!否则,编译不通过。

3.5 补充说明

  • 在栈帧中,与性能调优关系最为密切的部分就是局部变量表。在方法执行时,虚拟机使用局部变量表完成方法的传递。
  • 局部变量表中的变量也是重要的垃圾回收根节点,只要被局部变量表中直接或间接引用的对象都不会被回收

四、操作数栈(Operand Stack)

  1. 栈 :可以使用数组或者链表来实现

  2. 每一个独立的栈帧中除了包含局部变量表以外,还包含一个后进先出的操作数栈,也可以成为表达式栈

  3. 操作数栈,在方法执行过程中,根据字节码指令,往栈中写入数据或提取数据,即入栈(push)或出栈(pop)

某些字节码指令将值压入操作数栈,其余的字节码指令将操作数取出栈,使用他们后再把结果压入栈。(如字节码指令bipush操作)

在这里插入图片描述

比如:执行复制、交换、求和等操作

代码举例

在这里插入图片描述

4.1 操作数栈特点

  • 操作数栈,主要用于保存计算过程的中间结果,同时作为计算过程中变量临时的存储空间。

  • 操作数栈就是JVM执行引擎的一个工作区,当一个方法开始执行的时候,一个新的栈帧也会随之被创建出来,这个方法的操作数栈是空的

  • 每一个操作数栈都会拥有一个明确的栈深度用于存储数值,其所需的最大深度在编译器就定义好了,保存在方法的code属性中,为max_stack的值。

  • 栈中的任何一个元素都是可以任意的java数据类型

    • 32bit的类型占用一个栈单位深度
    • 64bit的类型占用两个栈深度单位
  • 操作数栈并非采用访问索引的方式来进行数据访问的,而是只能通过标准的入栈push和出栈pop操作来完成一次数据访问

  • 如果被调用的方法带有返回值的话,其返回值将会被压入当前栈帧的操作数栈中,并更新PC寄存器中下一条需要执行的字节码指令。

  • 操作数栈中的元素的数据类型必须与字节码指令的序列严格匹配,这由编译器在编译期间进行验证,同时在类加载过程中的类验证阶段的数据流分析阶段要再次验证。

  • 另外,我们说Java虚拟机的解释引擎是基于栈的执行引擎,其中的栈指的就是操作数栈。

五、代码追踪

结合上图结合下面的图来看一下一个方法(栈帧)的执行过程

①15入栈;②存储15,15进入局部变量表

注意:局部变量表的0号位被构造器占用,这里的15从局部变量表1号开始

在这里插入图片描述
③压入8;④8出栈,存储8进入局部变量表;

在这里插入图片描述
⑤从局部变量表中把索引为1和2的是数据取出来,放到操作数栈;⑥iadd相加操作

在这里插入图片描述
⑦iadd操作结果23出栈⑧将23存储在局部变量表索引为3的位置上istore_3

在这里插入图片描述

六、栈顶缓存技术(Top Of Stack Cashing)

  • 基于栈式架构的虚拟机所使用的零地址指令(即不考虑地址,单纯入栈出栈)更加紧凑,但完成一项操作的时候必然需要使用更多的入栈和出栈指令,这同时也就意味着将需要更多的指令分派(instruction dispatch)次数和内存读/写次数
  • 由于操作数是存储在内存中的,因此频繁地执行内存读/写操作必然会影响执行速度。为了解决这个问题,HotSpot JVM的设计者们提出了栈顶缓存技术,将栈顶元素全部缓存在物理CPU的寄存器中以此降低对内存的读/写次数,提升执行引擎的执行效率

七、动态链接(Dynamic Linking)

在这里插入图片描述

  1. 每一个栈帧内部都包含一个指向运行时常量池中该栈帧所属方法的引用

  2. 包含这个引用的目的就是为了支持当前方法的代码能够实现动态链接(Dynamic Linking),比如:invokedynamic指令

  3. 在Java源文件被编译到字节码文件中时,所有的变量和方法引用都作为符号引用(Symbolic Reference)保存在class文件的常量池里

  4. 比如:描述一个方法调用了另外的其他方法时,就是通过常量池中指向方法的符号引用来表示的,那么动态链接的作用就是为了将这些符号引用转换为调用方法的直接引用

在这里插入图片描述

  • 代码示例
public class DynamicLinkingTest {
    
    

    int num = 10;

    public void methodA(){
    
    
        System.out.println("methodA()....");
    }

    public void methodB(){
    
    
        System.out.println("methodB()....");
        methodA();
        num++;
    }

}

  • 在字节码指令中,methodB() 方法中通过 invokevirtual #7 指令调用了方法 A
  • 那么 #7 是个啥呢?
  public void methodB();
    descriptor: ()V
    flags: ACC_PUBLIC
    Code:
      stack=3, locals=1, args_size=1
         0: getstatic     #3                  // Field java/lang/System.out:Ljava/io/PrintStream;
         3: ldc           #6                  // String methodB()....
         5: invokevirtual #5                  // Method java/io/PrintStream.println:(Ljava/lang/String;)V
         8: aload_0
         9: invokevirtual #7                  // Method methodA:()V
        12: aload_0
        13: dup
        14: getfield      #2                  // Field num:I
        17: iconst_1
        18: iadd
        19: putfield      #2                  // Field num:I
        22: return
      LineNumberTable:
        line 16: 0
        line 18: 8
        line 20: 12
        line 21: 22
      LocalVariableTable:
        Start  Length  Slot  Name   Signature
            0      23     0  this   Lcom/atguigu/java1/DynamicLinkingTest;
  • 往上面翻,找到常量池的定义:#7 = Methodref #8.#31

    • 先找 #8 :
      • #8 = Class #32 :去找 #32
      • #32 = Utf8 com/atguigu/java1/DynamicLinkingTest
      • 结论:通过 #8 我们找到了 DynamicLinkingTest 这个类
    • 再来找 #31:
      • #31 = NameAndType #19:#13 :去找 #19 和 #13
      • #19 = Utf8 methodA :方法名为 methodA
      • #13 = Utf8 ()V :方法没有形参,返回值为 void
  • 结论:通过 #7 我们就能找到需要调用的 methodA() 方法,并进行调用

Constant pool:
   #1 = Methodref          #9.#23         // java/lang/Object."<init>":()V
   #2 = Fieldref           #8.#24         // com/atguigu/java1/DynamicLinkingTest.num:I
   #3 = Fieldref           #25.#26        // java/lang/System.out:Ljava/io/PrintStream;
   #4 = String             #27            // methodA()....
   #5 = Methodref          #28.#29        // java/io/PrintStream.println:(Ljava/lang/String;)V
   #6 = String             #30            // methodB()....
   #7 = Methodref          #8.#31         // com/atguigu/java1/DynamicLinkingTest.methodA:()V
   #8 = Class              #32            // com/atguigu/java1/DynamicLinkingTest
   #9 = Class              #33            // java/lang/Object
  #10 = Utf8               num
  #11 = Utf8               I
  #12 = Utf8               <init>
  #13 = Utf8               ()V
  #14 = Utf8               Code
  #15 = Utf8               LineNumberTable
  #16 = Utf8               LocalVariableTable
  #17 = Utf8               this
  #18 = Utf8               Lcom/atguigu/java1/DynamicLinkingTest;
  #19 = Utf8               methodA
  #20 = Utf8               methodB
  #21 = Utf8               SourceFile
  #22 = Utf8               DynamicLinkingTest.java
  #23 = NameAndType        #12:#13        // "<init>":()V
  #24 = NameAndType        #10:#11        // num:I
  #25 = Class              #34            // java/lang/System
  #26 = NameAndType        #35:#36        // out:Ljava/io/PrintStream;
  #27 = Utf8               methodA()....
  #28 = Class              #37            // java/io/PrintStream
  #29 = NameAndType        #38:#39        // println:(Ljava/lang/String;)V
  #30 = Utf8               methodB()....
  #31 = NameAndType        #19:#13        // methodA:()V
  #32 = Utf8               com/atguigu/java1/DynamicLinkingTest
  #33 = Utf8               java/lang/Object
  #34 = Utf8               java/lang/System
  #35 = Utf8               out
  #36 = Utf8               Ljava/io/PrintStream;
  #37 = Utf8               java/io/PrintStream
  #38 = Utf8               println
  #39 = Utf8               (Ljava/lang/String;)V
  • 在上面,其实还有很多符号引用,比如 Object、System、PrintStream 等等

为什么要用常量池呢?

  1. 因为在不同的方法,都可能调用常量或者方法,所以只需要存储一份即可,然后记录其引用即可,节省了空间

  2. 常量池的作用:就是为了提供一些符号和常量,便于指令的识别

八、方法的调用:解析和分派

8.1 静态链接与动态链接

静态链接机制与动态链接机制

在JVM中,将符号引用转换为调用方法的直接引用与方法的绑定机制相关

静态链接:

  • 当一个字节码文件被装载进JVM内部时,如果被调用的目标方法在编译期确定,且运行期保持不变时,这种情况下将调用方法的符号引用转换为直接引用的过程称之为静态链接

动态链接:

  • 如果被调用的方法在编译期无法被确定下来,也就是说,只能够在程序运行期将调用的方法的符号转换为直接引用,由于这种引用转换过程具备动态性,因此也被称之为动态链接。

8.2 早期绑定与晚期绑定

方法的绑定机制

静态链接和动态链接对应的方法的绑定机制为:早期绑定(Early Binding)和晚期绑定(Late Binding)。绑定是一个字段、方法或者类在符号引用被替换为直接引用的过程,这仅仅发生一次。

早期绑定

  • 早期绑定就是指被调用的目标方法如果在编译期可知,且运行期保持不变时,即可将这个方法与所属的类型进行绑定,这样一来,由于明确了被调用的目标方法究竟是哪一个,因此也就可以使用静态链接的方式将符号引用转换为直接引用。

晚期绑定

  • 如果被调用的方法在编译期无法被确定下来,只能够在程序运行期根据实际的类型绑定相关的方法,这种绑定方式也就被称之为晚期绑定。

代码示例

  • 代码
/**
 * 说明早期绑定和晚期绑定的例子
 *
 * @author shkstart
 * @create 2020 上午 11:59
 */
class Animal {
    
    
    public void eat() {
    
    
        System.out.println("动物进食");
    }
}

interface Huntable {
    
    
    void hunt();
}

class Dog extends Animal implements Huntable {
    
    
    @Override
    public void eat() {
    
    
        System.out.println("狗吃骨头");
    }

    @Override
    public void hunt() {
    
    
        System.out.println("捕食耗子,多管闲事");
    }
}

class Cat extends Animal implements Huntable {
    
    
    public Cat() {
    
    
        super();//表现为:早期绑定
    }

    public Cat(String name) {
    
    
        this();//表现为:早期绑定
    }

    @Override
    public void eat() {
    
    
        super.eat();//表现为:早期绑定
        System.out.println("猫吃鱼");
    }

    @Override
    public void hunt() {
    
    
        System.out.println("捕食耗子,天经地义");
    }
}

public class AnimalTest {
    
    
    public void showAnimal(Animal animal) {
    
    
        animal.eat();//表现为:晚期绑定
    }

    public void showHunt(Huntable h) {
    
    
        h.hunt();//表现为:晚期绑定
    }
}

  • invokevirtual 体现为晚期绑定
    在这里插入图片描述
  • invokeinterface 也体现为晚期绑定
    在这里插入图片描述
  • invokespecial 体现为早期绑定
    在这里插入图片描述

8.3 多态性与方法绑定

多态性与方法绑定机制

  1. 随着高级语言的横空出世,类似于Java一样的基于面向对象的编程语言如今越来越多,尽管这类编程语言在语法风格上存在一定的差别,但是它们彼此之间始终保持着一个共性,那就是都支持封装、继承和多态等面向对象特性,既然这一类的编程语言具备多态特性,那么自然也就具备早期绑定和晚期绑定两种绑定方式。

  2. Java中任何一个普通的方法其实都具备虚函数的特征,它们相当于C++语言中的虚函数(C++中则需要使用关键字virtual来显式定义)。如果在Java程序中不希望某个方法拥有虚函数的特征时,则可以使用关键字final来标记这个方法。

虚方法与非虚方法

虚方法与非虚方法的区别

  1. 如果方法在编译期就确定了具体的调用版本,这个版本在运行时是不可变的。这样的方法称为非虚方法。
  2. 静态方法、私有方法、fina1方法、实例构造器、父类方法都是非虚方法。
  3. 其他方法称为虚方法。

子类对象的多态的使用前提:

  1. 类的继承关系
  2. 方法的重写

虚拟机中调用方法的指令

四条普通指令:

  1. invokestatic:调用静态方法,解析阶段确定唯一方法版本
  2. invokespecial:调用<init>方法、私有及父类方法,解析阶段确定唯一方法版本
  3. invokevirtual:调用所有虚方法
  4. invokeinterface:调用接口方法

一条动态调用指令:

invokedynamic:动态解析出需要调用的方法,然后执行

区别:

  1. 前四条指令固化在虚拟机内部,方法的调用执行不可人为干预
  2. 而invokedynamic指令则支持由用户确定方法版本
  3. 其中invokestatic指令和invokespecial指令调用的方法称为非虚方法,其余的(fina1修饰的除外)称为虚方法。

代码示例:

  • 代码
/**
 * 解析调用中非虚方法、虚方法的测试
 *
 * invokestatic指令和invokespecial指令调用的方法称为非虚方法
 * @author shkstart
 * @create 2020 下午 12:07
 */
class Father {
    
    
    public Father() {
    
    
        System.out.println("father的构造器");
    }

    public static void showStatic(String str) {
    
    
        System.out.println("father " + str);
    }

    public final void showFinal() {
    
    
        System.out.println("father show final");
    }

    public void showCommon() {
    
    
        System.out.println("father 普通方法");
    }
}

public class Son extends Father {
    
    
    public Son() {
    
    
        //invokespecial
        super();
    }

    public Son(int age) {
    
    
        //invokespecial
        this();
    }

    //不是重写的父类的静态方法,因为静态方法不能被重写!
    public static void showStatic(String str) {
    
    
        System.out.println("son " + str);
    }

    private void showPrivate(String str) {
    
    
        System.out.println("son private" + str);
    }

    public void show() {
    
    
        //invokestatic
        showStatic("atguigu.com");

        //invokestatic
        super.showStatic("good!");

        //invokespecial
        showPrivate("hello!");

        //invokevirtual
        //虽然字节码指令中显示为invokevirtual,但因为此方法声明有final,不能被子类重写,所以也认为此方法是非虚方法。
        showFinal();

        //invokespecial
        super.showCommon();

        //invokevirtual
        //有可能子类会重写父类的showCommon()方法
        showCommon();
        info();

        MethodInterface in = null;
        //invokeinterface
        in.methodA();
    }

    public void info() {
    
    

    }

    public void display(Father f) {
    
    
        f.showCommon();
    }

    public static void main(String[] args) {
    
    
        Son so = new Son();
        so.show();
    }
}

interface MethodInterface {
    
    
    void methodA();
}
  • Son 类中 show() 方法的字节码指令如下

在这里插入图片描述


关于 invokedynamic 指令

  • JVM字节码指令集一直比较稳定,一直到Java7中才增加了一个invokedynamic指令,这是Java为了实现【动态类型语言】支持而做的一种改进。

  • 但是在Java7中并没有提供直接生成invokedynamic指令的方法,需要借助ASM这种底层字节码工具来产生invokedynamic指令。直到Java8的Lambda表达式的出现,invokedynamic指令的生成,在Java中才有了直接的生成方式。

  • Java7中增加的动态语言类型支持的本质是对Java虚拟机规范的修改,而不是对Java语言规则的修改,这一块相对来讲比较复杂,增加了虚拟机中的方法调用,最直接的受益者就是运行在Java平台的动态语言的编译器。


  • 代码
@FunctionalInterface
interface Func {
    
    
    public boolean func(String str);
}

public class Lambda {
    
    
    public void lambda(Func func) {
    
    
        return;
    }

    public static void main(String[] args) {
    
    
        Lambda lambda = new Lambda();

        Func func = s -> {
    
    
            return true;
        };

        lambda.lambda(func);

        lambda.lambda(s -> {
    
    
            return true;
        });
    }
}

  • 字节码指令
    在这里插入图片描述

8.4 方法重写的本质

动态语言和静态语言

  1. 动态类型语言和静态类型语言两者的区别就在于 对类型的检查是在编译期还是在运行期,满足前者就是静态类型语言,反之是动态类型语言。

  2. 说的再直白一点就是,静态类型语言是判断变量自身的类型信息;动态类型语言是判断变量值的类型信息,变量没有类型信息,变量值才有类型信息,这是动态语言的一个重要特征。

Java:String info = "mogu blog";     		(Java是静态类型语言的,会先编译就进行类型检查)
JS:var name = "shkstart";    var name = 10;	(运行时才进行检查)

方法重写的本质

Java 语言中方法重写的本质:

  1. 找到操作数栈顶的第一个元素所执行的对象的 实际类型,记作C。

  2. 如果 在类型C中找到与常量中的描述符合简单名称都相符的方法,则进行访问权限校验

    1. 如果通过则返回这个方法的直接引用,查找过程结束
    2. 如果不通过,则返回java.1ang.IllegalAccessError 异常
  3. 否则,按照继承关系从下往上依次对C的各个父类进行第2步的搜索和验证过程

  4. 如果始终没有找到合适的方法,则抛出java.lang.AbstractMethodError异常。


IllegalAccessError介绍

  1. 程序试图访问或修改一个属性或调用一个方法,这个属性或方法,你没有权限访问。
  2. 一般的,这个会引起编译器异常。这个错误如果发生在运行时,就说明一个类发生了不兼容的改变。
  3. 比如,你把应该有的jar包放从工程中拿走了,或者Maven中存在jar包冲突

回看解析阶段

  1. 解析阶段就是 将常量池内的符号引用转换为直接引用的过程
  2. 解析动作主要针对类或接口、字段、类方法、接口方法、方法类型等。对应常量池中的CONSTANT Class info、CONSTANT Fieldref info、CONSTANT Methodref info等

8.5 多态与虚方法表

虚方法表

  1. 在面向对象的编程中,会很频繁的使用到 动态分派,如果在每次动态分派的过程中都要重新在类的方法元数据中搜索合适的目标的话就可能 影响到执行效率

  2. 因此,为了提高性能,JVM采用在类的方法区建立一个虚方法表(virtual method table)来实现,非虚方法不会出现在表中。使用索引表来代替查找。

  3. 每个类中都有一个虚方法表,表中存放着各个方法的实际入口

  4. 虚方法表是什么时候被创建的呢?虚方法表会在类加载的链接阶段被创建并开始初始化,类的变量初始值准备完成之后,JVM会把该类的虚方法表也初始化完毕。

  5. 如图所示:如果类中重写了方法,那么调用的时候,就会直接在该类的虚方法表中查找

在这里插入图片描述

九、方法返回地址

方法返回地址(return address)

  1. 存放调用该方法的pc寄存器的值。一个方法的结束,有两种方式:

    1. 正常执行完成
    2. 出现未处理的异常,非正常退出
  2. 无论通过哪种方式退出,在方法退出后都返回到该方法被调用的位置。方法正常退出时,调用者的pc计数器的值作为返回地址,即调用该方法的指令的下一条指令的地址。而通过异常退出的,返回地址是要通过异常表来确定,栈帧中一般不会保存这部分信息。

  3. 本质上,方法的退出就是当前栈帧出栈的过程。此时,需要恢复上层方法的局部变量表、操作数栈、将返回值压入调用者栈帧的操作数栈、设置PC寄存器值等,让调用者方法继续执行下去。

  4. 正常完成出口和异常完成出口的区别在于:通过异常完成出口退出的不会给他的上层调用者产生任何的返回值。

方法退出的两种方式

当一个方法开始执行后,只有两种方式可以退出这个方法

正常退出:

  1. 执行引擎遇到任意一个方法返回的字节码指令(return),会有返回值传递给上层的方法调用者,简称正常完成出口;
  2. 一个方法在正常调用完成之后,究竟需要使用哪一个返回指令,还需要根据方法返回值的实际数据类型而定。
  3. 在字节码指令中,返回指令包含:
    • ireturn:当返回值是boolean,byte,char,short和int类型时使用
    • lreturn:Long类型
    • freturn:Float类型
    • dreturn:Double类型
    • areturn:引用类型
    • return:返回值类型为void的方法、实例初始化方法、类和接口的初始化方法

异常退出:

  1. 在方法执行过程中遇到异常(Exception),并且这个异常没有在方法内进行处理,也就是只要在本方法的异常表中没有搜索到匹配的异常处理器,就会导致方法退出,简称异常完成出口。

  2. 方法执行过程中,抛出异常时的异常处理,存储在一个异常处理表,方便在发生异常的时候找到处理异常的代码

在这里插入图片描述

代码举例

  • 代码
public class ReturnAddressTest {
    
    
    public boolean methodBoolean() {
    
    
        return false;
    }

    public byte methodByte() {
    
    
        return 0;
    }

    public short methodShort() {
    
    
        return 0;
    }

    public char methodChar() {
    
    
        return 'a';
    }

    public int methodInt() {
    
    
        return 0;
    }

    public long methodLong() {
    
    
        return 0L;
    }

    public float methodFloat() {
    
    
        return 0.0f;
    }

    public double methodDouble() {
    
    
        return 0.0;
    }

    public String methodString() {
    
    
        return null;
    }

    public Date methodDate() {
    
    
        return null;
    }

    public void methodVoid() {
    
    

    }

    static {
    
    
        int i = 10;
    }

    public void method2() {
    
    
        methodVoid();
        try {
    
    
            method1();
        } catch (IOException e) {
    
    
            e.printStackTrace();
        }
    }

    public void method1() throws IOException {
    
    
        FileReader fis = new FileReader("atguigu.txt");
        char[] cBuffer = new char[1024];
        int len;
        while ((len = fis.read(cBuffer)) != -1) {
    
    
            String str = new String(cBuffer, 0, len);
            System.out.println(str);
        }
        fis.close();
    }
}
  • 方法正常返回

    • ireturn
      在这里插入图片描述
    • dreturn
      在这里插入图片描述
    • areturn
      在这里插入图片描述
  • 异常处理表:

    • 反编译字节码文件,可得到 Exception table
    • from :字节码指令起始地址
    • to :字节码指令结束地址
    • target :出现异常跳转至地址为 11 的指令执行
    • type :捕获异常的类型

在这里插入图片描述

十、相关面试题

  1. 举例栈溢出的情况?(StackOverflowError)

    递归调用等,通过-Xss设置栈的大小;

  2. 调整栈的大小,就能保证不出现溢出么?

    不能 如递归无限次数肯定会溢出,调整栈大小只能保证溢出的时间晚一些,极限情况会导致OOM内存溢出(Out Of Memery Error)注意是Error

  3. 分配的栈内存越大越好么?

    不是 会挤占其他线程的空间

  4. 垃圾回收是否会涉及到虚拟机栈?

    不会

在这里插入图片描述
关于Error我们再多说一点,上面的讨论不涉及Exception

首先Exception和Error都是继承于Throwable 类,在 Java 中只有 Throwable 类型的实例才可以被抛出(throw)或者捕获(catch),它是异常处理机制的基本组成类型。

Exception和Error体现了JAVA这门语言对于异常处理的两种方式。

Exception是java程序运行中可预料的异常情况,咱们可以获取到这种异常,并且对这种异常进行业务外的处理。

Error是java程序运行中不可预料的异常情况,这种异常发生以后,会直接导致JVM不可处理或者不可恢复的情况。所以这种异常不可能抓取到,比如OutOfMemoryError、NoClassDefFoundError等。

其中的Exception又分为检查性异常和非检查性异常。两个根本的区别在于,检查性异常 必须在编写代码时,使用try catch捕获(比如:IOException异常)。非检查性异常 在代码编写使,可以忽略捕获操作(比如:ArrayIndexOutOfBoundsException),这种异常是在代码编写或者使用过程中通过规范可以避免发生的。

  1. 方法中定义的局部变量是否线程安全?

    要具体情况具体分析

/**
 * 面试题:
 * 方法中定义的局部变量是否线程安全?具体情况具体分析
 *
 * 何为线程安全?
 *     如果只有一个线程可以操作此数据,则必定是线程安全的。
 *     如果有多个线程操作此数据,则此数据是共享数据。如果不考虑同步机制的话,会存在线程安全问题
 *
 * 我们知道StringBuffer是线程安全的源码中实现synchronized,StringBuilder源码未实现synchronized,在多线程情况下是不安全的 * 二者均继承自AbstractStringBuilder * */
public class StringBuilderTest {
    
    

    //s1的声明方式是线程安全的,s1在方法method1内部消亡了
    public static void method1(){
    
    
        StringBuilder s1 = new StringBuilder();
        s1.append("a");
        s1.append("b");
    }

    //stringBuilder的操作过程:是不安全的,因为method2可以被多个线程调用
    public static void method2(StringBuilder stringBuilder){
    
    
        stringBuilder.append("a");
        stringBuilder.append("b");
    }

    //s1的操作:是线程不安全的 有返回值,可能被其他线程共享
    public static StringBuilder method3(){
    
    
        StringBuilder s1 = new StringBuilder();
        s1.append("a");
        s1.append("b");
        return s1;
    }

    //s1的操作:是线程安全的 ,StringBuilder的toString方法是创建了一个新的String,s1在内部消亡了
    public static String method4(){
    
    
        StringBuilder s1 = new StringBuilder();
        s1.append("a");
        s1.append("b");
        return s1.toString();
    }

    public static void main(String[] args) {
    
    
        StringBuilder s = new StringBuilder();
        new Thread(()->{
    
    
            s.append("a");
            s.append("b");
        }).start();

        method2(s);

    }
}

猜你喜欢

转载自blog.csdn.net/BeiisBei/article/details/106641628
今日推荐