线程同步(Mutex,Critical Section)



多个线程同时访问共享数据时可能会冲突,这跟前面讲信号时所说的可重入性是同样的问题。比如两个线程都要把某个全局变量增加1,这个操作在某平台需要三条指令完成:

  1. 从内存读变量值到寄存器
  2. 寄存器的值加1
  3. 将寄存器的值写回内存

假设两个线程在 多处理器平台 上同时执行这三条指令,则可能导致下图所示的结果,最后变量只加了一次而非两次。

并行访问冲突:
在这里插入图片描述
实例:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define NLOOP 5000
int counter; 		/* incremented by threads */
void *doit(void *);
int main(void)
{
    
    
	pthread_t tidA, tidB;
	pthread_create(&tidA, NULL, &doit, NULL);
	pthread_create(&tidB, NULL, &doit, NULL);
	/* wait for both threads to terminate */
	pthread_join(tidA, NULL);
	pthread_join(tidB, NULL);
	return 0;
}
void *doit(void *vptr)
{
    
    
	int i, val;
	for (i = 0; i < NLOOP; i++) {
    
    
		val = counter;
		printf("%x: %d\n", (unsigned int)pthread_self(), val + 1);
		counter = val + 1;
	}
	return NULL;
}

我们创建两个线程,各自把 counter 增加 5000次,正常情况下最后 counter 应该等于10000,但事实上每次运行该程序的结果都不一样,有时候数到 5000多,有时候数到 6000多。


1、线程 为什么要同步

  1. 共享资源,多个线程都可对共享资源操作
  2. 线程操作共享资源的先后顺序不确定
  3. 处理器对存储器的操作一般不是 原子操作(atomic operation)

2、互斥锁(Mutex)

Mutex 操作原语:

序号 函数 描述
1 pthread_mutex_init() 创建互斥锁(动态初始化)
2 pthread_mutex_destroy() 销毁互斥锁
3 pthread_mutex_lock() 加锁线程试图锁定互斥锁的过程)
4 pthread_mutex_trylock() 尝试加锁
5 pthread_mutex_unlock() 解锁(将互斥锁由锁定状态变为解锁状态

2.1 临界区(Critical Section)

保证在某一时刻只有一个线程能访问数据的简便办法。在任意时刻只允许一个线程对共享资源进行访问。如果有多个线程试图同时访问 临界区,那么 在有一个线程进入后,其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。
临界区 在被释放后,其他线程可以继续抢占,并以此达到用 原子方式 操作共享资源的目的。


2.2 临界区的选定

临界区的选定因尽可能小,如果选定太大会影响程序的并行处理性能。


2.3 互斥锁 实例

#include <pthread.h>
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict attr);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

实例:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define NLOOP 5000

int counter; /* incremented by threads */
pthread_mutex_t counter_mutex = PTHREAD_MUTEX_INITIALIZER;

void *doit(void *);
int main(int argc, char **argv)
{
    
    
	pthread_t tidA, tidB;
	pthread_create(&tidA, NULL, doit, NULL);
	pthread_create(&tidB, NULL, doit, NULL);
	/* wait for both threads to terminate */
	pthread_join(tidA, NULL);
	pthread_join(tidB, NULL);
	return 0;
}
void *doit(void *vptr)	//do it
{
    
    
	int i, val;
	
	for (i = 0; i < NLOOP; i++) {
    
    
		pthread_mutex_lock(&counter_mutex);
		
		val = counter;
		printf("%x: %d\n", (unsigned int)pthread_self(), val + 1);
		counter = val + 1;
		
		pthread_mutex_unlock(&counter_mutex);
	}
	return NULL;
}

这样运行结果就正常了,每次运行都能数到10000。


3、死锁(deadlock)

1.同一个线程在拥有A锁的情况下再次请求获得A锁
2.线程一拥有A锁,请求获得B锁;线程二拥有B锁,请求获得A锁。


4、读写锁

读共享,写独占

pthread_rwlock_t
pthread_rwlock_init
pthread_rwlock_destroy
pthread_rwlock_rdlock
pthread_rwlock_wrlock
pthread_rwlock_tryrdlock
pthread_rwlock_trywrlock
pthread_rwlock_unlock

实例:

#include <stdio.h>
#include <pthread.h>
int counter;
pthread_rwlock_t rwlock;
//3个线程不定时写同一全局资源,5个线程不定时读同一全局资源
void *th_write(void *arg)
{
    
    
	int t;
	while (1) {
    
    
		pthread_rwlock_wrlock(&rwlock);
		t = counter;
		usleep(100);
		printf("write %x : counter=%d ++counter=%d\n", (int)pthread_self(), t, ++counter);
		pthread_rwlock_unlock(&rwlock);
		usleep(100);
	}
}
void *th_read(void *arg)
{
    
    
	while (1) {
    
    
		pthread_rwlock_rdlock(&rwlock);
		printf("read %x : %d\n", (int)pthread_self(), counter);
		pthread_rwlock_unlock(&rwlock);
		usleep(100);
	}
}
int main(void)
{
    
    
	int i;
	pthread_t tid[8];
	pthread_rwlock_init(&rwlock, NULL);
	
	for (i = 0; i < 3; i++)
		pthread_create(&tid[i], NULL, th_write, NULL);
	for (i = 0; i < 5; i++)
		pthread_create(&tid[i+3], NULL, th_read, NULL);
		
	pthread_rwlock_destroy(&rwlock);
	for (i = 0; i < 8; i++)
		pthread_join(tid[i], NULL);
		
	return 0;
}

5、条件变量

条件变量给多个线程提供了一个汇合的场所,条件变量控制原语:

pthread_cond_t
pthread_cond_init
pthread_cond_destroy
pthread_cond_wait
pthread_cond_timedwait
pthread_cond_signal
pthread_cond_broadcast

生产者消费者模型:

#include <stdlib.h>
#include <pthread.h>
#include <stdio.h>
struct msg {
    
    
	struct msg *next;
	int num;
};

struct msg *head;
pthread_cond_t 	has_product = PTHREAD_COND_INITIALIZER;
pthread_mutex_t lock 		= PTHREAD_MUTEX_INITIALIZER;

void *consumer(void *p)
{
    
    
	struct msg *mp;
	for (;;) {
    
    
		pthread_mutex_lock(&lock);
		while (head == NULL)
			pthread_cond_wait(&has_product, &lock);
			
		mp = head;
		head = mp->next;
		pthread_mutex_unlock(&lock);
		printf("Consume %d\n", mp->num);
		free(mp);
		sleep(rand() % 5);
	}
}

void *producer(void *p)
{
    
    
	struct msg *mp;
	for (;;) {
    
    
		mp = malloc(sizeof(struct msg));
		mp->num = rand() % 1000 + 1;
		printf("Produce %d\n", mp->num);
		pthread_mutex_lock(&lock);
		mp->next = head;
		head = mp;
		pthread_mutex_unlock(&lock);
		pthread_cond_signal(&has_product);
		sleep(rand() % 5);
	}
}

int main(void)
{
    
    
	pthread_t pid, cid;
	
	srand(time(NULL));
	pthread_create(&pid, NULL, producer, NULL);
	pthread_create(&cid, NULL, consumer, NULL);
	pthread_join(pid, NULL);
	pthread_join(cid, NULL);
	return 0;
}

6、信号量

信号量控制原语:

sem_t
sem_init
sem_wait
sem_trywait
sem_timedwait
sem_post
sem_destroy

生产者消费者实例:

#include <stdlib.h>
#include <pthread.h>
#include <stdio.h>
#include <semaphore.h>

#define NUM 5
int queue[NUM];
sem_t blank_number, product_number;

void *producer(void *arg)
{
    
    
	int p = 0;
	while (1) {
    
    
		sem_wait(&blank_number);
		queue[p] = rand() % 1000 + 1;
		printf("Produce %d\n", queue[p]);
		sem_post(&product_number);
		p = (p+1)%NUM;
		sleep(rand()%5);
	}
}

void *consumer(void *arg)
{
    
    
	int c = 0;
	while (1) {
    
    
		sem_wait(&product_number);
		printf("Consume %d\n", queue[c]);
		queue[c] = 0;
		sem_post(&blank_number);
		c = (c+1)%NUM;
		sleep(rand()%5);
	}
}

int main(void)
{
    
    
	pthread_t pid, cid;
	sem_init(&blank_number, 0, NUM);
	sem_init(&product_number, 0, 0);
	
	pthread_create(&pid, NULL, producer, NULL);
	pthread_create(&cid, NULL, consumer, NULL);
	
	pthread_join(pid, NULL);
	pthread_join(cid, NULL);
	
	sem_destroy(&blank_number);
	sem_destroy(&product_number);
	
	return 0;
}


7、进程间锁


7.1 进程 间 pthread_mutex

#include <pthread.h>
int pthread_mutexattr_init(pthread_mutexattr_t *attr);
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared);
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

pshared:

  1. 线程锁:PTHREAD_PROCESS_PRIVATE
  2. 进程锁:PTHREAD_PROCESS_SHARED

默认情况是线程锁。


实例:
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <string.h>

struct mt {
    
    
	int num;
	pthread_mutex_t mutex;
	pthread_mutexattr_t mutexattr;
};

int main(void)
{
    
    
	int fd, i;
	struct mt *mm;
	pid_t pid;
	fd = open("mt_test", O_CREAT | O_RDWR, 0777);
	/* 不需要write,文件里初始值为0 */
	ftruncate(fd, sizeof(*mm));
	mm = mmap(NULL, sizeof(*mm), PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
	close(fd);
	
	memset(mm, 0, sizeof(*mm));

	/* 初始化互斥对象属性 */
	pthread_mutexattr_init(&mm->mutexattr);
	
	/* 设置互斥对象为PTHREAD_PROCESS_SHARED共享,即可以在多个进程的线程访问,PTHREAD_PROCESS_PRIVATE
	为同一进程的线程共享 */
	pthread_mutexattr_setpshared(&mm->mutexattr,PTHREAD_PROCESS_SHARED);
	
	pthread_mutex_init(&mm->mutex, &mm->mutexattr);

	pid = fork();
	if (pid == 0){
    
    
		/* 加10次。相当于加10 */
		for (i=0;i<10;i++){
    
    
			pthread_mutex_lock(&mm->mutex);
			(mm->num)++;
			printf("num++:%d\n",mm->num);
			pthread_mutex_unlock(&mm->mutex);
			sleep(1);
		}
	}
	else if (pid > 0) {
    
    
		/* 父进程完成x+2,加10次,相当于加20 */
		for (i=0; i<10; i++){
    
    
			pthread_mutex_lock(&mm->mutex);
			mm->num += 2;
			printf("num+=2:%d\n",mm->num);
			pthread_mutex_unlock(&mm->mutex);
			sleep(1);
		}
		wait(NULL);
	}
	pthread_mutex_destroy(&mm->mutex);
	pthread_mutexattr_destroy(&mm->mutexattr);
	/* 父子均需要释放 */
	munmap(mm,sizeof(*mm));
	unlink("mt_test");
	return 0;
}

7.2 文件锁

使用 fcntl 提供文件锁:

struct flock {
    
    
	...
	short l_type; /* Type of lock: F_RDLCK,
	F_WRLCK, F_UNLCK */
	short l_whence; /* How to interpret l_start:
	SEEK_SET, SEEK_CUR, SEEK_END */
	off_t l_start; /* Starting offset for lock */
	off_t l_len; /* Number of bytes to lock */
	pid_t l_pid; /* PID of process blocking our lock
	(F_GETLK only) */
	...
};

实例:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
void sys_err(char *str)
{
    
    
	perror(str);
	exit(1);
}
int main(int argc, char *argv[])
{
    
    
	int fd;
	struct flock f_lock;
	if (argc < 2) {
    
    
		printf("./a.out filename\n");
		exit(1);
	}
	
	if ((fd = open(argv[1], O_RDWR)) < 0)
		sys_err("open");
		
	//f_lock.l_type = F_WRLCK;
	f_lock.l_type 	= F_RDLCK;
	f_lock.l_whence = SEEK_SET;
	f_lock.l_start 	= 0;
	f_lock.l_len 	= 0; //0表示整个文件加锁
	
	fcntl(fd, F_SETLKW, &f_lock);
	printf("get flock\n");
	sleep(10);
	f_lock.l_type = F_UNLCK;
	fcntl(fd, F_SETLKW, &f_lock);
	printf("un flock\n");
	
	close(fd);
	return 0;
}

猜你喜欢

转载自blog.csdn.net/Hongwei_1990/article/details/107327660
今日推荐