【多线程】LockSupport 使用 原理 源码 分析

在这里插入图片描述

1.概述

前半部分完全转载:https://segmentfault.com/a/1190000014436679

1. LockSupport类介绍

LockSupport类可以阻塞当前线程以及唤醒指定被阻塞的线程。主要是通过park()unpark(thread)方法来实现阻塞和唤醒线程的操作的。

每个线程都有一个许可(permit),permit只有两个值1和0,默认是0。

  1. 当调用unpark(thread)方法,就会将thread线程的许可permit设置成1(注意多次调用unpark方法,不会累加,permit值还是1)。
  2. 当调用park()方法,如果当前线程的permit是1,那么将permit设置为0,并立即返回。如果当前线程的permit是0,那么当前线程就会阻塞,直到别的线程将当前线程的permit设置为1.park方法会将permit再次设置为0,并返回。

注意:因为permit默认是0,所以一开始调用park()方法,线程必定会被阻塞。调用unpark(thread)方法后,会自动唤醒thread线程,即park方法立即返回。

2.LockSupport类示例

import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.locks.LockSupport;

// 简易的先进先出非重入锁
class FIFOMutex {
    
    
    //
    private final AtomicBoolean locked = new AtomicBoolean(false);
    // 记录等待线程队列
    private final Queue<Thread> waiters = new ConcurrentLinkedQueue<Thread>();

    public void lock() {
    
    
        boolean wasInterrupted = false;
        Thread current = Thread.currentThread();
        waiters.add(current);

        // 如果当前线程不是等待线程队列第一个,或者locked状态已经是true,那么当前线程就要等待
        while (waiters.peek() != current || !locked.compareAndSet(false, true)) {
    
    
            System.out.println(Thread.currentThread().getName()+"  park start");
            LockSupport.park(this);
            System.out.println(Thread.currentThread().getName()+"  park end");
            // 等待线程的中断线程标志位为true,就设置wasInterrupted为true
            if (Thread.interrupted())
                wasInterrupted = true;
        }

        // 移除第一个元素。当前线程就是第一个元素,因为while判断条件
        waiters.remove();
        // 如果wasInterrupted为true,当前线程发出中断请求
        if (wasInterrupted)
            current.interrupt();
        System.out.println(Thread.currentThread().getName()+" lock end" );
    }

    // 唤醒可能等待的线程
    public void unlock() {
    
    
        System.out.println(Thread.currentThread().getName()+"  unpark start ");
        // 将locked设置为false
        locked.set(false);
        // 唤醒当前线程队列中第一个元素
        LockSupport.unpark(waiters.peek());
        System.out.println(Thread.currentThread().getName()+"  unpark end ");
    }
}


public class LockSupportTest {
    
    

    public static void startThread(String name, final FIFOMutex clock, final CountDownLatch countDownLatch) {
    
    
        new Thread(new Runnable() {
    
    
            @Override
            public void run() {
    
    
                clock.lock();
                try {
    
    
                    Thread.sleep(100);
                } catch (InterruptedException e) {
    
    
                    e.printStackTrace();
                } finally {
    
    
                    System.out.println(Thread.currentThread().getName()+"  finally");
                    countDownLatch.countDown();
                    clock.unlock();
                }
            }
        }, name).start();
    }

    public static void main(String[] args) {
    
    
        FIFOMutex clock = new FIFOMutex();
        CountDownLatch countDownLatch = new CountDownLatch(3);
        startThread("t111", clock, countDownLatch);
        startThread("t222", clock, countDownLatch);
        startThread("t333", clock, countDownLatch);

        try {
    
    
            countDownLatch.await();
        } catch (InterruptedException e) {
    
    
            e.printStackTrace();
        }
        System.out.println("main end");
    }
}

从这个例子中可以看出,park方法会阻塞当前线程,unpark(thread)方法,会立即唤醒被阻塞的线程,让它从park方法处继续执行。

3. LockSupport源码注释

package java.util.concurrent.locks;
import sun.misc.Unsafe;

import java.util.concurrent.Semaphore;
import java.util.concurrent.ThreadLocalRandom;

/**
 * 提供阻塞线程和唤醒线程的方法。
 */
public class LockSupport {
    
    
    // 构造函数是私有的,所以不能在外部实例化
    private LockSupport() {
    
    }

    // 用来设置线程t的parkBlocker属性。此对象在线程受阻塞时被记录,以允许监视工具和诊断工具确定线程受阻塞的原因。
    private static void setBlocker(Thread t, Object arg) {
    
    
        UNSAFE.putObject(t, parkBlockerOffset, arg);
    }

    // 唤醒处于阻塞状态下的thread线程
    public static void unpark(Thread thread) {
    
    
        // 当线程不为null时调用
        if (thread != null)
            // 通过UNSAFE的unpark唤醒被阻塞的线程
            UNSAFE.unpark(thread);
    }

    // 阻塞当前线程
    public static void park(Object blocker) {
    
    
        Thread t = Thread.currentThread();
        // 设置线程t的parkBlocker属性,用于记录线程阻塞情况
        setBlocker(t, blocker);
        // 通过UNSAFE的park方法阻塞线程
        UNSAFE.park(false, 0L);
        setBlocker(t, null);
    }

    // 阻塞当前线程nanos纳秒时间,超出时间线程就会被唤醒返回
    public static void parkNanos(Object blocker, long nanos) {
    
    
        if (nanos > 0) {
    
    
            Thread t = Thread.currentThread();
            setBlocker(t, blocker);
            UNSAFE.park(false, nanos);
            setBlocker(t, null);
        }
    }
    // 阻塞当前线程,超过deadline日期线程就会被唤醒返回
    public static void parkUntil(Object blocker, long deadline) {
    
    
        Thread t = Thread.currentThread();
        setBlocker(t, blocker);
        UNSAFE.park(true, deadline);
        setBlocker(t, null);
    }

    // 获取线程t的parkBlocker属性
    public static Object getBlocker(Thread t) {
    
    
        if (t == null)
            throw new NullPointerException();
        return UNSAFE.getObjectVolatile(t, parkBlockerOffset);
    }

    // 阻塞当前线程,不设置parkBlocker属性
    public static void park() {
    
    
        UNSAFE.park(false, 0L);
    }

    public static void parkNanos(long nanos) {
    
    
        if (nanos > 0)
            UNSAFE.park(false, nanos);
    }

    public static void parkUntil(long deadline) {
    
    
        UNSAFE.park(true, deadline);
    }

    static final int nextSecondarySeed() {
    
    
        int r;
        Thread t = Thread.currentThread();
        if ((r = UNSAFE.getInt(t, SECONDARY)) != 0) {
    
    
            r ^= r << 13;   // xorshift
            r ^= r >>> 17;
            r ^= r << 5;
        }
        else if ((r = ThreadLocalRandom.current().nextInt()) == 0)
            r = 1; // avoid zero
        UNSAFE.putInt(t, SECONDARY, r);
        return r;
    }

    // Hotspot implementation via intrinsics API
    private static final Unsafe UNSAFE;
    private static final long parkBlockerOffset;
    private static final long SEED;
    private static final long PROBE;
    private static final long SECONDARY;
    static {
    
    
        try {
    
    
            UNSAFE = Unsafe.getUnsafe();
            Class<?> tk = Thread.class;
            parkBlockerOffset = UNSAFE.objectFieldOffset
                (tk.getDeclaredField("parkBlocker"));
            SEED = UNSAFE.objectFieldOffset
                (tk.getDeclaredField("threadLocalRandomSeed"));
            PROBE = UNSAFE.objectFieldOffset
                (tk.getDeclaredField("threadLocalRandomProbe"));
            SECONDARY = UNSAFE.objectFieldOffset
                (tk.getDeclaredField("threadLocalRandomSecondarySeed"));
        } catch (Exception ex) {
    
     throw new Error(ex); }
    }

}

LockSupport的源码比较简单,主要就是park系列阻塞当前线程的方法,以及unpark唤醒某个线程的方法。

注意,park系列的方法就是直接阻塞当前线程的,所以不需要线程变量参数。而unpark方法是唤醒对应线程的,所以必须传递线程变量thread。

在Java多线程详细介绍这篇文章中,我们介绍了线程一共有六种状态,而park系列方法线程进入两种状态:WAITING等待状态或TIMED_WAITING等待状态。这两种状态都会使线程阻塞在当前位置。

那么怎么唤醒这两种状态的线程呢?

对于WAITING等待状态有两种唤醒方式:

  1. 调用对应的唤醒方法。这里就是LockSupport的unpark方法。
  2. 调用该线程变量的interrupt()方法,会唤醒该线程,并抛出InterruptedException异常。

对于TIMED_WAITING等待状态来说,它比WAITING状态多了一种唤醒方式,就是超过规定时间,那么线程会自动醒来。

5.更底层的代码

参考:https://blog.csdn.net/weixin_39687783/article/details/85058686

4. 用法

以前写测试类的时候,我都会在测试类下加入Thread.sleep(Integer.MAX_VALUE) 让它睡一下

 @Test
    public void mainTest() throws InterruptedException {
    
    
        Runnable runnable = () -> {
    
    
            for (int i = 0; i <= 1000000; i++) {
    
    
                System.out.println(Thread.currentThread().getName() + "-----" + i);
                if (i % 20 == 0) {
    
    
                    Thread.yield();
                }
            }
        };
        new Thread(runnable, "栈长").start();
        new Thread(runnable, "小蜜").start();

        Thread.sleep(Integer.MAX_VALUE);
    }

    

现在多了一种方法,我可以这样做

@Test
    public void mainTest1() throws InterruptedException {
    
    
        Runnable runnable = () -> {
    
    
            for (int i = 0; i <= 100; i++) {
    
    
                System.out.println(Thread.currentThread().getName() + "-----" + i);
                if (i % 20 == 0) {
    
    
                    Thread.yield();
                }
            }
        };
        new Thread(runnable, "栈长").start();
        new Thread(runnable, "小蜜").start();

        LockSupport.park();
    }

在spring boot 程序中有看到过这样的

@SpringBootApplication
public class xxxx {
    
    

    private static final Logger logger = LoggerFactory.getLogger(xxx.class);

    public static void main(String[] args) {
    
    
        
            SpringApplication sa = new SpringApplication(xxx.class);
            sa.run(args);
            LockSupport.park();
    }
}

目前还不太清楚这样是属于怎么样的法,为什么要这么干

猜你喜欢

转载自blog.csdn.net/qq_21383435/article/details/108576861