三种方法求解斐波那契数列并计算时间复杂度

关于斐波那契数列的简介:

  斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

具体题目:

求解斐波那契数列的F(n)有三种常用算法:递归算法和非递归算法还有矩阵快速幂。试分析三种算法的时间复杂度。

1.递归算法

Fib(5)的递归调用过程

#include<iostream>
using namespace std;

long Fibonacci(int n) {
    if (n == 0)
        return 0;
    else if (n == 1)
        return 1;
    else
        return Fibonacci(n - 1) + Fibonacci(n-2);
}

int main() {
    cout << "Enter an integer number:" << endl;
    int N;
    cin >> N;
    cout << Fibonacci(N) << endl;
    system("pause");
    return 0;
}

时间复杂度分析:

  求解F(n),必须先计算F(n-1)和F(n-2),计算F(n-1)和F(n-2),又必须先计算F(n-3)和F(n-4)。。。。。。以此类推,直至必须先计算F(1)和F(0),然后逆推得到F(n-1)和F(n-2)的结果,从而得到F(n)要计算很多重复的值,在时间上造成了很大的浪费,算法的时间复杂度随着N的增大呈现指数增长,时间的复杂度为O(2^n),即2的n次方

2.非递归算法

#include<iostream>
using namespace std;

long Fibonacci(int n) {
    if (n <= 2)
        return 1;
    else {
        long num1 = 1;
        long num2 = 1;
        for (int i = 2;i < n - 1;i++) {
            num2 = num1 + num2;
            num1 = num2 - num1;
        }
        return num1 + num2;
    }
}

int main() {
    cout << "Enter an integer number:" << endl;
    int N;
    cin >> N;
    cout << Fibonacci(N) << endl;
    system("pause");
    return 0;
}

时间复杂度分析:

   从n(>2)开始计算,用F(n-1)和F(n-2)两个数相加求出结果,这样就避免了大量的重复计算,它的效率比递归算法快得多,算法的时间复杂度与n成正比,即算法的时间复杂度为O(n).

扫描二维码关注公众号,回复: 11661018 查看本文章

3.矩阵乘法+快速幂

这里写图片描述

因而计算f(n)就简化为了计算矩阵的(n-2)次方,而计算矩阵的(n-2)次方,我们又可以进行分解,即计算矩阵(n-2)/2次方的平方,逐步分解下去,由于折半计算矩阵次方,因而时间复杂度为O(log n)

#include <iostream>
using namespace std;

class Matrix
{
public:
    int n;
    int **m;
    Matrix(int num)
    {
        m=new int*[num];
        for (int i=0; i<num; i++) {
            m[i]=new int[num];
        }
        n=num;
        clear();
    }
    void clear()
    {
        for (int i=0; i<n; ++i) {
            for (int j=0; j<n; ++j) {
                m[i][j]=0;
            }
        }
    }
    void unit()
    {
        clear();
        for (int i=0; i<n; ++i) {
            m[i][i]=1;
        }
    }
    Matrix operator=(const Matrix mtx)
    {
        Matrix(mtx.n);
        for (int i=0; i<mtx.n; ++i) {
            for (int j=0; j<mtx.n; ++j) {
                m[i][j]=mtx.m[i][j];
            }
        }
        return *this;
    }
    Matrix operator*(const Matrix &mtx)
    {
        Matrix result(mtx.n);
        result.clear();
        for (int i=0; i<mtx.n; ++i) {
            for (int j=0; j<mtx.n; ++j) {
                for (int k=0; k<mtx.n; ++k) {
                    result.m[i][j]+=m[i][k]*mtx.m[k][j];
                }   
            }
        }
        return result;
    }
};
int main(int argc, const char * argv[]) {
    unsigned int num=2;
    Matrix first(num);
    first.m[0][0]=1;
    first.m[0][1]=1;
    first.m[1][0]=1;
    first.m[1][1]=0;
    int t;
    cin>>t;
    Matrix result(num);
    result.unit();
    int n=t-2;
    while (n) {
        if (n%2) {
            result=result*first;
            }
        first=first*first;
        n=n/2;
    }
    cout<<(result.m[0][0]+result.m[0][1])<<endl;
    return 0;
}

此篇为资源整合,如果有侵权请联系我。

猜你喜欢

转载自blog.csdn.net/hbhhhxs/article/details/105187494