(Java并发基础)线程池

线程池比手动创建线程好在哪里?

为什么使用线程池?

如果我们有10000个任务需要执行,如果创建10000个线程去执行,创建如此多的线程也会给稳定性带来危害,因为每个系统中,可创建线程的数量是有一个上限的,不可能无限的创建。线程执行完需要被回收,大量的线程又会给垃圾回收带来压力。但我们的任务确实非常多,如果都在主线程串行执行,那效率也太低了,那应该怎么办呢?于是便诞生了线程池来平衡线程与系统资源之间的关系。

我们来总结下如果每个任务都创建一个线程会带来哪些问题:

第一点,反复创建线程系统开销比较大,每个线程创建和销毁都需要时间,如果任务比较简单,那么就有可能导致创建和销毁线程消耗的资源比线程执行任务本身消耗的资源还要大。
第二点,过多的线程会占用过多的内存等资源,还会带来过多的上下文切换,同时还会导致系统不稳定。

线程池解决问题思路

针对以上两个问题,线程池提供了两个解决思路。

  1. 针对反复创建线程开销大的问题,线程池用一些固定的线程一直保持工作状态并反复执行任务。
  2. 针对过多线程占用太多内存资源的问题,线程池采用根据需要创建线程,控制线程的总数量,避免过多地占用内存资源。

如何使用线程池

如下代码,线程池中有5个线程,然后线程池将10000个任务分配给这5个线程。这5个线程反复领取任务并执行。

/** 
* 描述:     用固定线程数的线程池执行10000个任务 
*/ 
public class ThreadPoolDemo { 
 
    public static void main(String[] args) { 
        ExecutorService service = Executors.newFixedThreadPool(5);
        for (int i = 0; i < 10000; i++) { 
            service.execute(new Task());
        } 
    System.out.println(Thread.currentThread().getName());
    } 
 
    static class Task implements Runnable { 
 
        public void run() { 
            System.out.println("Thread Name: " + Thread.currentThread().getName());
        } 
    } 
}

使用线程池的好处

使用线程池比手动创建线程主要有三点好处。

第一点,线程池可以解决线程生命周期的系统开销问题,同时还可以加快响应速度。因为线程池中的线程是可以复用的,我们只用少量的线程去执行大量的任务,这就大大减小了线程生命周期的开销。而且线程通常不是等接到任务后再临时创建,而是已经创建好时刻准备执行任务,这样就消除了线程创建所带来的延迟,提升了响应速度,增强了用户体验。
第二点,线程池可以统筹内存和 CPU 的使用,避免资源使用不当。线程池会根据配置和任务数量灵活地控制线程数量,不够的时候就创建,太多的时候就回收,避免线程过多导致内存溢出,或线程太少导致 CPU 资源浪费,达到了一个完美的平衡。
第三点,线程池可以统一管理资源。比如线程池可以统一管理任务队列和线程,可以统一开始或结束任务,比单个线程逐一处理任务要更方便、更易于管理,同时也有利于数据统计,比如我们可以很方便地统计出已经执行过的任务的数量。

线程池的各个参数

在这里插入图片描述

线程创建的时机

在这里插入图片描述
线程池会逐一判断 corePoolSize 、workQueue 、maxPoolSize ,如果依然不能满足需求,则会拒绝任务。我们可以把 corePoolSize 与 maxPoolSize 比喻成长工与临时工。

ThreadFactory

第四个参数是 ThreadFactory,ThreadFactory 实际上是一个线程工厂,它的作用是生产线程以便执行任务。我们可以选择使用默认的线程工厂,创建的线程都会在同一个线程组,并拥有一样的优先级,且都不是守护线程,我们也可以选择自己定制线程工厂,以方便给线程自定义命名,不同的线程池内的线程通常会根据具体业务来定制不同的线程名。

workQueue 和 Handler

最后两个参数是 workQueue 和 Handler,它们分别对应阻塞队列和任务拒绝策略

线程池有哪 4 种拒绝策略

新建线程池

newThreadPoolExecutor(5, 10, 5, TimeUnit.SECONDS, new LinkedBlockingQueue<>(),
   new ThreadPoolExecutor.DiscardOldestPolicy());

拒绝时机

线程池会在以下两种情况下会拒绝新提交的任务。

  1. 第一种情况是当我们调用 shutdown 等方法关闭线程池后,即便此时可能线程池内部依然有没执行完的任务正在执行,但是由于线程池已经关闭,此时如果再向线程池内提交任务,就会遭到拒绝。
  2. 第二种情况是线程池没有能力继续处理新提交的任务,也就是工作已经非常饱和的时候。

我们主要关心的是由于工作已经非常饱和的拒绝。比如新建一个连接池,使用容量上限为10的ArrayBlockingQueue 作为任务队列,并且指定线程池的核心线程数为 5,最大线程数为 10,假设此时有 20 个耗时任务被提交,在这种情况下,线程池会首先创建核心数量的线程,也就是5个线程来执行任务,然后往队列里去放任务,队列的 10 个容量被放满了之后,会继续创建新线程,直到达到最大线程数 10。此时线程池中一共有 20 个任务,其中 10 个任务正在被 10 个线程执行,还有 10 个任务在任务队列中等待,而且由于线程池的最大线程数量就是 10,所以已经不能再增加更多的线程来帮忙处理任务了,这就意味着此时线程池工作饱和,这个时候再提交新任务时就会被拒绝。

在这里插入图片描述

拒绝策略

我们应该如何正确地选择拒绝策略呢?Java中的ThreadPoolExecutor 为我们提供了4种默认的拒绝策略来应对不同的场景。都实现了ThreadPoolExecutor 接口。如图所示:
在这里插入图片描述

  1. 第一种拒绝策略是 AbortPolicy,这种拒绝策略在拒绝任务时,会直接抛出一个类型为 RejectedExecutionException 的RuntimeException,让你感知到任务被拒绝了,于是你便可以根据业务逻辑选择重试或者放弃提交等策略。
  2. 第二种拒绝策略是 DiscardPolicy,这种拒绝策略正如它的名字所描述的一样,当新任务被提交后直接被丢弃掉,也不会给你任何的通知,相对而言存在一定的风险,因为我们提交的时候根本不知道这个任务会被丢弃,可能造成数据丢失。
  3. 第三种拒绝策略是 DiscardOldestPolicy,如果线程池没被关闭且没有能力执行,则会丢弃任务队列中的头结点,通常是存活时间最长的任务,这种策略与第二种不同之处在于它丢弃的不是最新提交的,而是队列中存活时间最长的,这样就可以腾出空间给新提交的任务,但同理它也存在一定的数据丢失风险。
  4. 第四种拒绝策略是 CallerRunsPolicy,相对而言它就比较完善了,当有新任务提交后,如果线程池没被关闭且没有能力执行,则把这个任务交于提交任务的线程执行,也就是谁提交任务,谁就负责执行任务。这样做主要有两点好处。
    第一点新提交的任务不会被丢弃,这样也就不会造成业务损失。
    第二点好处是,由于谁提交任务谁就要负责执行任务,这样提交任务的线程就得负责执行任务,而执行任务又是比较耗时的,在这段期间,提交任务的线程被占用,也就不会再提交新的任务,减缓了任务提交的速度,相当于是一个负反馈。在此期间,线程池中的线程也可以充分利用这段时间来执行掉一部分任务,腾出一定的空间,相当于是给了线程池一定的缓冲期。

6种常见的线程池

  1. FixedThreadPool
  2. CachedThreadPool
  3. ScheduledThreadPool
  4. SingleThreadExecutor
  5. SingleThreadScheduledExecutor
  6. ForkJoinPool

FixedThreadPool

 public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }


public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }

从newFixedThreadPool方法中可以看出,它的核心线程数和最大线程数是一样的,所以可以把它看作是固定线程数的线程池,它的特点是线程池中的线程数除了初始阶段需要从 0 开始增加外,之后的线程数量就是固定的,就算任务数超过线程数,线程池也不会再创建更多的线程来处理任务,而是会把超出线程处理能力的任务放到任务队列中进行等待。而且就算任务队列满了,到了本该继续增加线程数的时候,由于它的最大线程数和核心线程数是一样的,所以也无法再增加新的线程了。
在这里插入图片描述

CachedThreadPool

可缓存线程池。从下面源码可以看到,最大线程数是整型的最大值。当线程闲置时还可以对线程进行回收,也就是说该线程池的线程数量不是固定不变的,当然它也有一个用于存储提交任务的队列,但这个队列是 SynchronousQueue,队列的容量为0,实际不存储任何任务,它只负责对任务进行中转和传递,所以效率比较高。

public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

ScheduledThreadPool

第三个线程池是 ScheduledThreadPool,它支持定时或周期性执行任务。比如每隔 10 秒钟执行一次任务,而实现这种功能的方法主要有 3 种,如代码所示:

ScheduledExecutorService service = Executors.newScheduledThreadPool(10);
 
service.schedule(new Task(), 10, TimeUnit.SECONDS);
 
service.scheduleAtFixedRate(new Task(), 10, 10, TimeUnit.SECONDS);
 
service.scheduleWithFixedDelay(new Task(), 10, 10, TimeUnit.SECONDS);

那么这 3 种方法有什么区别呢?

  1. 第一种方法 schedule 比较简单,表示延迟指定时间后执行一次任务,如果代码中设置参数为 10 秒,也就是 10 秒后执行一次任务后就结束。
  2. 第二种方法 scheduleAtFixedRate 表示以固定的频率执行任务,它的第二个参数 initialDelay 表示第一次延时时间,第三个参数 period 表示周期,也就是第一次延时后每次延时多长时间执行一次任务。
  3. 第三种方法 scheduleWithFixedDelay 与第二种方法类似,也是周期执行任务,区别在于对周期的定义,之前的 scheduleAtFixedRate 是以任务开始的时间为时间起点开始计时,时间到就开始执行第二次任务,而不管任务需要花多久执行;而 scheduleWithFixedDelay 方法以任务结束的时间为下一次循环的时间起点开始计时。

SingleThreadExecutor

第四种线程池是 SingleThreadExecutor,它会使用唯一的线程去执行任务,原理和 FixedThreadPool 是一样的,只不过这里线程只有一个,如果线程在执行任务的过程中发生异常,线程池也会重新创建一个线程来执行后续的任务。这种线程池由于只有一个线程,所以非常适合用于所有任务都需要按被提交的顺序依次执行的场景,而前几种线程池不一定能够保障任务的执行顺序等于被提交的顺序,因为它们是多线程并行执行的。

SingleThreadScheduledExecutor

第五个线程池是 SingleThreadScheduledExecutor,它实际和第三种 ScheduledThreadPool 线程池非常相似,它只是 ScheduledThreadPool 的一个特例,内部只有一个线程,如源码所示:

new ScheduledThreadPoolExecutor(1)

它只是将 ScheduledThreadPool 的核心线程数设置为了 1。

在这里插入图片描述

总结上述的五种线程池,我们以核心线程数、最大线程数,以及线程存活时间三个维度进行对比,如表格所示。

第一个线程池 FixedThreadPool,它的核心线程数和最大线程数都是由构造函数直接传参的,而且它们的值是相等的,所以最大线程数不会超过核心线程数,也就不需要考虑线程回收的问题,如果没有任务可执行,线程仍会在线程池中存活并等待任务。

第二个线程池 CachedThreadPool 的核心线程数是 0,而它的最大线程数是 Integer 的最大值,线程数一般是达不到这么多的,所以如果任务特别多且耗时的话,CachedThreadPool 就会创建非常多的线程来应对。

ForkJoinPool

在这里插入图片描述
它的名字 ForkJoin 也描述了它的执行机制,主要用法和之前的线程池是相同的,也是把任务交给线程池去执行,线程池中也有任务队列来存放任务。但是 ForkJoinPool 线程池和之前的线程池有两点非常大的不同之处。第一点它非常适合执行可以产生子任务的任务。

如图所示,我们有一个 Task,这个 Task 可以产生三个子任务,三个子任务并行执行完毕后将结果汇总给 Result,比如说主任务需要执行非常繁重的计算任务,我们就可以把计算拆分成三个部分,这三个部分是互不影响相互独立的,这样就可以利用 CPU 的多核优势,并行计算,然后将结果进行汇总。这里面主要涉及两个步骤,第一步是拆分也就是 Fork,第二步是汇总也就是 Join,到这里你应该已经了解到 ForkJoinPool 线程池名字的由来了。

举个例子,比如面试中经常考到的菲波那切数列,你一定非常熟悉,这个数列的特点就是后一项的结果等于前两项的和,第 0 项是 0,第 1 项是 1,那么第 2 项就是 0+1=1,以此类推。我们在写代码时应该首选效率更高的迭代形式或者更高级的乘方或者矩阵公式法等写法,不过假设我们写成了最初版本的递归形式,伪代码如下所示:

if (n <= 1) {
    return n;
 } else {
    Fib f1 = new Fib(n - 1);
    Fib f2 = new Fib(n - 2);
    f1.solve();
    f2.solve();
    number = f1.number + f2.number;
    return number;
 }

你可以看到如果 n<=1 则直接返回 n,如果 n>1 ,先将前一项 f1 的值计算出来,然后往前推两项求出 f2 的值,然后将两值相加得到结果,所以我们看到在求和运算中产生了两个子任务。计算 f(4) 的流程如下图所示。
在这里插入图片描述
在计算 f(4) 时需要首先计算出 f(2) 和 f(3),而同理,计算 f(3) 时又需要计算 f(1) 和 f(2),以此类推。

在这里插入图片描述
这是典型的递归问题,对应到我们的 ForkJoin 模式,如图所示,子任务同样会产生子子任务,最后再逐层汇总,得到最终的结果。

ForkJoinPool 线程池有多种方法可以实现任务的分裂和汇总,其中一种用法如下方代码所示。

class Fibonacci extends RecursiveTask<Integer> { 
 
    int n;
 
    public Fibonacci(int n) { 
        this.n = n;
    } 
 
    @Override
    public Integer compute() { 
        if (n <= 1) { 
            return n;
        } 
    Fibonacci f1 = new Fibonacci(n - 1);
    f1.fork();
    Fibonacci f2 = new Fibonacci(n - 2);
    f2.fork();
    return f1.join() + f2.join();
    } 
 }

我们看到它首先继承了 RecursiveTask,RecursiveTask 类是对ForkJoinTask 的一个简单的包装,这时我们重写 compute() 方法,当 n<=1 时直接返回,当 n>1 就创建递归任务,也就是 f1 和 f2,然后我们用 fork() 方法分裂任务并分别执行,最后在 return 的时候,使用 join() 方法把结果汇总,这样就实现了任务的分裂和汇总。

public static void main(String[] args) throws ExecutionException, InterruptedException { 
    ForkJoinPool forkJoinPool = new ForkJoinPool();
    for (int i = 0; i < 10; i++) { 
        ForkJoinTask task = forkJoinPool.submit(new Fibonacci(i));
        System.out.println(task.get());
    } 
 }

上面这段代码将会打印出斐波那契数列的第 0 到 9 项的值:

0
1
1
2
3
5
8
13
21
34

这就是 ForkJoinPool 线程池和其他线程池的第一点不同。

我们来看第二点不同,第二点不同之处在于内部结构,之前的线程池所有的线程共用一个队列,但 ForkJoinPool 线程池中每个线程都有自己独立的任务队列,如图所示。

在这里插入图片描述
ForkJoinPool 线程池内部除了有一个共用的任务队列之外,每个线程还有一个对应的双端队列 deque,这时一旦线程中的任务被 Fork 分裂了,分裂出来的子任务放入线程自己的 deque 里,而不是放入公共的任务队列中。如果此时有三个子任务放入线程 t1 的 deque 队列中,对于线程 t1 而言获取任务的成本就降低了,可以直接在自己的任务队列中获取而不必去公共队列中争抢也不会发生阻塞(除了后面会讲到的 steal 情况外),减少了线程间的竞争和切换,是非常高效的。

在这里插入图片描述
我们再考虑一种情况,此时线程有多个,而线程 t1 的任务特别繁重,分裂了数十个子任务,但是 t0 此时却无事可做,它自己的 deque 队列为空,这时为了提高效率,t0 就会想办法帮助 t1 执行任务,这就是“work-stealing”的含义。

双端队列 deque 中,线程 t1 获取任务的逻辑是后进先出,也就是LIFO(Last In Frist Out),而线程 t0 在“steal”偷线程 t1 的 deque 中的任务的逻辑是先进先出,也就是FIFO(Fast In Frist Out),如图所示,图中很好的描述了两个线程使用双端队列分别获取任务的情景。你可以看到,使用 “work-stealing” 算法和双端队列很好地平衡了各线程的负载。

在这里插入图片描述
最后,我们用一张全景图来描述 ForkJoinPool 线程池的内部结构,你可以看到 ForkJoinPool 线程池和其他线程池很多地方都是一样的,但重点区别在于它每个线程都有一个自己的双端队列来存储分裂出来的子任务。ForkJoinPool 非常适合用于递归的场景,例如树的遍历、最优路径搜索等场景。

线程池常用的阻塞队列

线程池内部结构

在这里插入图片描述
线程池的内部结构主要由四部分组成,如图所示。

  1. 第一部分是线程池管理器,它主要负责管理线程池的创建、销毁、添加任务等管理操作,它是整个线程池的管家。
  2. 第二部分是工作线程,也就是图中的线程 t0~t9,这些线程勤勤恳恳地从任务队列中获取任务并执行。
  3. 第三部分是任务队列,作为一种缓冲机制,线程池会把当下没有处理的任务放入任务队列中,由于多线程同时从任务队列中获取任务是并发场景,此时就需要任务队列满足线程安全的要求,所以线程池中任务队列采用 BlockingQueue 来保障线程安全。
  4. 第四部分是任务,任务要求实现统一的接口,以便工作线程可以处理和执行。

阻塞队列

在这里插入图片描述

LinkedBlockingQueue

对于 FixedThreadPool 和 SingleThreadExector 而言,它们使用的阻塞队列是容量为 Integer.MAX_VALUE 的 LinkedBlockingQueue,可以认为是无界队列。由于 FixedThreadPool 线程池的线程数是固定的,所以没有办法增加特别多的线程来处理任务,这时就需要 LinkedBlockingQueue 这样一个没有容量限制的阻塞队列来存放任务。这里需要注意,由于线程池的任务队列永远不会放满,所以线程池只会创建核心线程数量的线程,所以此时的最大线程数对线程池来说没有意义,因为并不会触发生成多于核心线程数的线程。

SynchronousQueue

第二种阻塞队列是 SynchronousQueue,对应的线程池是 CachedThreadPool。线程池 CachedThreadPool 的最大线程数是 Integer 的最大值,可以理解为线程数是可以无限扩展的。CachedThreadPool 和上一种线程池 FixedThreadPool 的情况恰恰相反,FixedThreadPool 的情况是阻塞队列的容量是无限的,而这里 CachedThreadPool 是线程数可以无限扩展,所以 CachedThreadPool 线程池并不需要一个任务队列来存储任务,因为一旦有任务被提交就直接转发给线程或者创建新线程来执行,而不需要另外保存它们。

我们自己创建使用 SynchronousQueue 的线程池时,如果不希望任务被拒绝,那么就需要注意设置最大线程数要尽可能大一些,以免发生任务数大于最大线程数时,没办法把任务放到队列中也没有足够线程来执行任务的情况。

DelayedWorkQueue

第三种阻塞队列是DelayedWorkQueue,它对应的线程池分别是 ScheduledThreadPool 和 SingleThreadScheduledExecutor,这两种线程池的最大特点就是可以延迟执行任务,比如说一定时间后执行任务或是每隔一定的时间执行一次任务。DelayedWorkQueue 的特点是内部元素并不是按照放入的时间排序,而是会按照延迟的时间长短对任务进行排序,内部采用的是“堆”的数据结构。之所以线程池 ScheduledThreadPool 和 SingleThreadScheduledExecutor 选择 DelayedWorkQueue,是因为它们本身正是基于时间执行任务的,而延迟队列正好可以把任务按时间进行排序,方便任务的执行。

为什么不采用Executors 的各种方法创建线程?

FixedThreadPool

public static ExecutorService newFixedThreadPool(int nThreads) { 
    return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());
}

通过往构造函数中传参,创建了一个核心线程数和最大线程数相等的线程池,它们的数量也就是我们传入的参数,这里的重点是使用的队列是容量没有上限的 LinkedBlockingQueue,如果我们对任务的处理速度比较慢,那么随着请求的增多,队列中堆积的任务也会越来越多,最终大量堆积的任务会占用大量内存,并发生 OOM ,也就是OutOfMemoryError,这几乎会影响到整个程序,会造成很严重的后果。

SingleThreadExecutor

public static ExecutorService newSingleThreadExecutor() { 
    return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>()));
}

你可以看出,newSingleThreadExecutor 和 newFixedThreadPool 的原理是一样的,只不过把核心线程数和最大线程数都直接设置成了 1,但是任务队列仍是无界的 LinkedBlockingQueue,所以也会导致同样的问题,也就是当任务堆积时,可能会占用大量的内存并导致 OOM。

CachedThreadPool

public static ExecutorService newCachedThreadPool() { 
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,60L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>());
}

这里的 CachedThreadPool 和前面两种线程池不一样的地方在于任务队列使用的是 SynchronousQueue,SynchronousQueue 本身并不存储任务,而是对任务直接进行转发,这本身是没有问题的,但你会发现构造函数的第二个参数被设置成了 Integer.MAX_VALUE,这个参数的含义是最大线程数,所以由于 CachedThreadPool 并不限制线程的数量,当任务数量特别多的时候,就可能会导致创建非常多的线程,最终超过了操作系统的上限而无法创建新线程,或者导致内存不足。

ScheduledThreadPool 和 SingleThreadScheduledExecutor

public ScheduledThreadPoolExecutor(int corePoolSize) { 
    super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,new DelayedWorkQueue());
}

通过源码可以看出,它采用的任务队列是 DelayedWorkQueue,这是一个延迟队列,同时也是一个无界队列,所以和 LinkedBlockingQueue 一样,如果队列中存放过的任务,就可能导致 OOM。

所以说自动创建线程池是有风险的

合适的线程数量是多少?CPU 核心数和线程数的关系?

这部分内容以后再补上。

CPU 密集型任务

IO密集型任务

如何根据实际需要,定制自己的线程池?

这部分内容以后再补上。

如何正确关闭线程池

shutdown()

第一种方法叫作 shutdown(),它可以安全地关闭一个线程池,调用 shutdown() 方法之后线程池并不是立刻就被关闭,因为这时线程池中可能还有很多任务正在被执行,或是任务队列中有大量正在等待被执行的任务,调用 shutdown() 方法后线程池会在执行完正在执行的任务和队列中等待的任务后才彻底关闭。但这并不代表 shutdown() 操作是没有任何效果的,调用 shutdown() 方法后如果还有新的任务被提交,线程池则会根据拒绝策略直接拒绝后续新提交的任务。

isShutdown()

第二个方法叫作 isShutdown(),它可以返回 true 或者 false 来判断线程池是否已经开始了关闭工作,也就是是否执行了 shutdown 或者 shutdownNow 方法。这里需要注意,如果调用 isShutdown() 方法的返回的结果为 true 并不代表线程池此时已经彻底关闭了,这仅仅代表线程池开始了关闭的流程,也就是说,此时可能线程池中依然有线程在执行任务,队列里也可能有等待被执行的任务。

isTerminated()

第三种方法叫作 isTerminated(),这个方法可以检测线程池是否真正“终结”了,这不仅代表线程池已关闭,同时代表线程池中的所有任务都已经都执行完毕了,因为我们刚才说过,调用 shutdown 方法之后,线程池会继续执行里面未完成的任务,不仅包括线程正在执行的任务,还包括正在任务队列中等待的任务。比如此时已经调用了 shutdown 方法,但是有一个线程依然在执行任务,那么此时调用 isShutdown 方法返回的是 true ,而调用 isTerminated 方法返回的便是 false ,因为线程池中还有任务正在在被执行,线程池并没有真正“终结”。直到所有任务都执行完毕了,调用 isTerminated() 方法才会返回 true,这表示线程池已关闭并且线程池内部是空的,所有剩余的任务都执行完毕了。

awaitTermination()

第四个方法叫作 awaitTermination(),它本身并不是用来关闭线程池的,而是主要用来判断线程池状态的。比如我们给 awaitTermination 方法传入的参数是 10 秒,那么它就会陷入 10 秒钟的等待,直到发生以下三种情况之一:

  1. 等待期间(包括进入等待状态之前)线程池已关闭并且所有已提交的任务(包括正在执行的和队列中等待的)都执行完毕,相当于线程池已经“终结”了,方法便会返回 true;
  2. 等待超时时间到后,第一种线程池“终结”的情况始终未发生,方法返回 false;
  3. 等待期间线程被中断,方法会抛出 InterruptedException 异常。
    也就是说,调用 awaitTermination 方法后当前线程会尝试等待一段指定的时间,如果在等待时间内,线程池已关闭并且内部的任务都执行完毕了,也就是说线程池真正“终结”了,那么方法就返回 true,否则超时返回 fasle。

我们则可以根据 awaitTermination() 返回的布尔值来判断下一步应该执行的操作。

shutdownNow()

最后一个方法是 shutdownNow(),也是 5 种方法里功能最强大的,它与第一种 shutdown 方法不同之处在于名字中多了一个单词 Now,也就是表示立刻关闭的意思。在执行 shutdownNow 方法之后,首先会给所有线程池中的线程发送 interrupt 中断信号,尝试中断这些任务的执行,然后会将任务队列中正在等待的所有任务转移到一个 List 中并返回,我们可以根据返回的任务 List 来进行一些补救的操作,例如记录在案并在后期重试。shutdownNow() 的源码如下所示。

public List<Runnable> shutdownNow() { 
    List<Runnable> tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();

    try { 
        checkShutdownAccess();
        advanceRunState(STOP);
        interruptWorkers();
        tasks = drainQueue();
    } finally { 
        mainLock.unlock();
    } 
 
    tryTerminate();
    return tasks;
 }

你可以看到源码中有一行 interruptWorkers() 代码,这行代码会让每一个已经启动的线程都中断,这样线程就可以在执行任务期间检测到中断信号并进行相应的处理,提前结束任务。这里需要注意的是,由于 Java 中不推荐强行停止线程的机制的限制,即便我们调用了 shutdownNow 方法,如果被中断的线程对于中断信号不理不睬,那么依然有可能导致任务不会停止。可见我们在开发中落地最佳实践是很重要的,我们自己编写的线程应当具有响应中断信号的能力,正确停止线程的方法在第 2 讲有讲过,应当利用中断信号来协同工作。

在掌握了这 5 种关闭线程池相关的方法之后,我们就可以根据自己的业务需要,选择合适的方法来停止线程池,比如通常我们可以用 shutdown() 方法来关闭,这样可以让已提交的任务都执行完毕,但是如果情况紧急,那我们就可以用 shutdownNow 方法来加快线程池“终结”的速度。

线程复用原理

我们知道线程池会使用固定数量或可变数量的线程来执行任务,但无论是固定数量或可变数量的线程,其线程数量都远远小于任务数量,面对这种情况线程池可以通过线程复用让同一个线程去执行不同的任务,那么线程复用背后的原理是什么呢?

线程池可以把线程和任务进行解耦,线程归线程,任务归任务,摆脱了之前通过 Thread 创建线程时的一个线程必须对应一个任务的限制。在线程池中,同一个线程可以从 BlockingQueue 中不断提取新任务来执行,其核心原理在于线程池对 Thread 进行了封装,并不是每次执行任务都会调用 Thread.start() 来创建新线程,而是让每个线程去执行一个“循环任务”,在这个“循环任务”中,不停地检查是否还有任务等待被执行,如果有则直接去执行这个任务,也就是调用任务的 run 方法,把 run 方法当作和普通方法一样的地位去调用,相当于把每个任务的 run() 方法串联了起来,所以线程数量并不增加。

我们首先来复习一下线程池创建新线程的时机和规则:
在这里插入图片描述

public void execute(Runnable command) { 
    if (command == null) 
        throw new NullPointerException();
    int c = ctl.get();
    if (workerCountOf(c) < corePoolSize) { 
        if (addWorker(command, true)) 
            return;
        c = ctl.get();
    } 
    if (isRunning(c) && workQueue.offer(command)) { 
        int recheck = ctl.get();
        if (! isRunning(recheck) && remove(command)) 
            reject(command);
        else if (workerCountOf(recheck) == 0) 
            addWorker(null, false);
    } 
    else if (!addWorker(command, false)) 
        reject(command);
}

首先看下前几行:

//如果传入的Runnable的空,就抛出异常
if (command == null) 
    throw new NullPointerException();

execute 方法中通过 if 语句判断 command ,也就是 Runnable 任务是否等于 null,如果为 null 就抛出异常。
接下来判断当前线程数是否小于核心线程数,如果小于核心线程数就调用 addWorker() 方法增加一个 Worker,这里的 Worker 就可以理解为一个线程:

if (workerCountOf(c) < corePoolSize) { 
    if (addWorker(command, true)) 
        return;
        c = ctl.get();
}

那 addWorker 方法又是做什么用的呢?addWorker 方法的主要作用是在线程池中创建一个线程并执行第一个参数传入的任务,它的第二个参数是个布尔值,如果布尔值传入 true 代表增加线程时判断当前线程是否少于 corePoolSize,小于则增加新线程,大于等于则不增加;同理,如果传入 false 代表增加线程时判断当前线程是否少于 maxPoolSize,小于则增加新线程,大于等于则不增加,所以这里的布尔值的含义是以核心线程数为界限还是以最大线程数为界限进行是否新增线程的判断。addWorker() 方法如果返回 true 代表添加成功,如果返回 false 代表添加失败。

我们接下来看下一部分代码:

if (isRunning(c) && workQueue.offer(command)) { 
    int recheck = ctl.get();
    if (! isRunning(recheck) && remove(command)) 
        reject(command);
    else if (workerCountOf(recheck) == 0) 
        addWorker(null, false);
}

如果代码执行到这里,说明当前线程数大于或等于核心线程数或者 addWorker 失败了,那么就需要通过 if (isRunning© && workQueue.offer(command)) 检查线程池状态是否为 Running,如果线程池状态是 Running 就把任务放入任务队列中,也就是 workQueue.offer(command)。如果线程池已经不处于 Running 状态,说明线程池被关闭,那么就移除刚刚添加到任务队列中的任务,并执行拒绝策略,代码如下所示:

if (! isRunning(recheck) && remove(command)) 
    reject(command);

下面我们再来看后一个 else 分支:

else if (workerCountOf(recheck) == 0) 
    addWorker(null, false);

能进入这个 else 说明前面判断到线程池状态为 Running,那么当任务被添加进来之后就需要防止没有可执行线程的情况发生(比如之前的线程被回收了或意外终止了),所以此时如果检查当前线程数为 0,也就是 workerCountOf(recheck) == 0,那就执行 addWorker() 方法新建线程。

我们再来看最后一部分代码:

else if (!addWorker(command, false)) 
    reject(command);

执行到这里,说明线程池不是 Running 状态或线程数大于或等于核心线程数并且任务队列已经满了,根据规则,此时需要添加新线程,直到线程数达到“最大线程数”,所以此时就会再次调用 addWorker 方法并将第二个参数传入 false,传入 false 代表增加线程时判断当前线程数是否少于 maxPoolSize,小于则增加新线程,大于等于则不增加,也就是以 maxPoolSize 为上限创建新的 worker;addWorker 方法如果返回 true 代表添加成功,如果返回 false 代表任务添加失败,说明当前线程数已经达到 maxPoolSize,然后执行拒绝策略 reject 方法。如果执行到这里线程池的状态不是 Running,那么 addWorker 会失败并返回 false,所以也会执行拒绝策略 reject 方法。

可以看出,在 execute 方法中,多次调用 addWorker 方法把任务传入,addWorker 方法会添加并启动一个 Worker,这里的 Worker 可以理解为是对 Thread 的包装,Worker 内部有一个 Thread 对象,它正是最终真正执行任务的线程,所以一个 Worker 就对应线程池中的一个线程,addWorker 就代表增加线程。线程复用的逻辑实现主要在 Worker 类中的 run 方法里执行的 runWorker 方法中,简化后的 runWorker 方法代码如下所示。

runWorker(Worker w) {
    Runnable task = w.firstTask;
    while (task != null || (task = getTask()) != null) {
        try {
            task.run();
        } finally {
            task = null;
        }
    }
}

可以看出,实现线程复用的逻辑主要在一个不停循环的 while 循环体中。

  1. 通过取 Worker 的 firstTask 或者通过 getTask 方法从 workQueue 中获取待执行的任务。
  2. 直接调用 task 的 run 方法来执行具体的任务(而不是新建线程)。
    在这里,我们找到了最终的实现,通过取 Worker 的 firstTask 或者 getTask方法从 workQueue 中取出了新任务,并直接调用 Runnable 的 run 方法来执行任务,也就是如之前所说的,每个线程都始终在一个大循环中,反复获取任务,然后执行任务,从而实现了线程的复用。

猜你喜欢

转载自blog.csdn.net/gonghaiyu/article/details/107398288