207. Course Schedule 课程表

你这个学期必须选修 numCourse 门课程,记为 0 到 numCourse-1 。

在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们:[0,1]

给定课程总量以及它们的先决条件,请你判断是否可能完成所有课程的学习?

示例 1:

输入: 2, [[1,0]]
输出: true
解释: 总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。所以这是可能的。

示例 2:

输入: 2, [[1,0],[0,1]]
输出: false
解释: 总共有 2 门课程。学习课程 1 之前,你需要先完成​课程 0;并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。

提示:

  1. 输入的先决条件是由 边缘列表 表示的图形,而不是 邻接矩阵 。
  2. 你可以假定输入的先决条件中没有重复的边。
  3. 1 <= numCourses <= 105

深度优先搜索

给定一个包含 n 个节点的有向图 G,给出它的节点编号的一种排列,如果满足:**对于图 G 中的任意一条有向边 (u, v),u 在排列中都出现在 v 的前面。**那么称该排列是图 G 的「拓扑排序」。

将本题建模成一个求拓扑排序的问题:

  • 将每一门课看成一个节点;
  • 想要学习课程 A 之前必须完成课程 B,那么我们从 B 到 A 连接一条有向边。这样以来,在拓扑排序中,B 一定出现在 A 的前面。

将深度优先搜索的流程与拓扑排序的求解联系起来,用一个栈来存储所有已经搜索完成的节点。

对于一个节点 u,如果它的所有相邻节点都已经搜索完成,那么在搜索回溯到 u 的时候,u 本身也会变成一个已经搜索完成的节点。这里的「相邻节点」指的是从 u 出发通过一条有向边可以到达的所有节点。

假设我们当前搜索到了节点 u,如果它的所有相邻节点都已经搜索完成,那么这些节点都已经在栈中了,此时我们就可以把 u 入栈。可以发现,如果我们从栈顶往栈底的顺序看,由于 u 处于栈顶的位置,那么 u 出现在所有 u 的相邻节点的前面。因此对于 u 这个节点而言,它是满足拓扑排序的要求的。

这样以来,我们对图进行一遍深度优先搜索。当每个节点进行回溯的时候,我们把该节点放入栈中。最终从栈顶到栈底的序列就是一种拓扑排序。

对于图中的任意一个节点,它在搜索的过程中有三种状态,即:

  • 「未搜索」:我们还没有搜索到这个节点;
  • 「搜索中」:我们搜索过这个节点,但还没有回溯到该节点,即该节点还没有入栈,还有相邻的节点没有搜索完成;
  • 「已完成」:我们搜索过并且回溯过这个节点,即该节点已经入栈,并且所有该节点的相邻节点都出现在栈的更底部的位置,满足拓扑排序的要求。

通过上述的三种状态,我们就可以给出使用深度优先搜索得到拓扑排序的算法流程,在每一轮的搜索搜索开始时,我们任取一个「未搜索」的节点开始进行深度优先搜索。

  • 我们将当前搜索的节点 u 标记为「搜索中」,遍历该节点的每一个相邻节点 v:
    • 如果 v 为「未搜索」,那么我们开始搜索 v,待搜索完成回溯到 u;
    • 如果 v 为「搜索中」,那么我们就找到了图中的一个环,因此是不存在拓扑排序的;
    • 如果 v 为「已完成」,那么说明 v 已经在栈中了,而 u 还不在栈中,因此 u 无论何时入栈都不会影响到 (u, v) 之前的拓扑关系,以及不用进行任何操作。
  • 当 u 的所有相邻节点都为「已完成」时,我们将 u 放入栈中,并将其标记为「已完成」。

在整个深度优先搜索的过程结束后,如果我们没有找到图中的环,那么栈中存储这所有的 nn 个节点,从栈顶到栈底的顺序即为一种拓扑排序。

由于我们只需要判断是否存在一种拓扑排序,而栈的作用仅仅是存放最终的拓扑排序结果,因此我们可以只记录每个节点的状态,而省去对应的栈。

Code

	def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
		def dfs(u: int):
			nonlocal valid
			visited[u] = 1
			for v in edges[u]:
				if visited[v] == 0:
					dfs(v)
					if not valid:
						return
				elif visited[v] == 1:
					valid = False
					return
			visited[u] = 2
			result.append(u)

		edges = collections.defaultdict(list)
		visited, result, valid = [0] * numCourses, list(), True

		for info in prerequisites:
			edges[info[1]].append(info[0])

		for i in range(numCourses):
			if valid and not visited[i]:
				dfs(i)

		return valid

复杂度分析

时间复杂度: O(n+m),其中 n 为课程数,m 为先修课程的要求数。这其实就是对图进行深度优先搜索的时间复杂度。

空间复杂度: O(n+m)。题目中是以列表形式给出的先修课程关系,为了对图进行深度优先搜索,我们需要存储成邻接表的形式,空间复杂度为 O(n+m)。在深度优先搜索的过程中,我们需要最多 O(n) 的栈空间(递归)进行深度优先搜索,因此总空间复杂度为 O(n+m)。

猜你喜欢

转载自blog.csdn.net/weixin_43336281/article/details/107778947