求1^2 + 2^2 + ... + n^2的值

本文内容摘自此处
首先给出答案, 即 1 2 + 2 2 + + n 2 = 1 6 n ( 2 n + 1 ) ( n + 1 ) 1^2 + 2^2 + \cdots + n^2 = \frac{1}{6}n(2n+1)(n+1) . 以下给出证明过程:

( n + 1 ) 3 = n 3 + 3 n 2 + 3 n + 1 \because (n+1)^3 = n^3 + 3n^2 + 3n + 1
( n + 1 ) 3 n 3 = 3 n 2 + 3 n + 1 \therefore (n+1)^3 - n^3 = 3n^2 + 3n + 1
同理可得,
n 3 ( n 1 ) 3 = 3 ( n 1 ) 2 + 3 ( n 1 ) + 1 n^3 - (n-1)^3 = 3(n-1)^2 + 3(n - 1) + 1
\cdots
2 3 1 3 = 3 1 2 + 3 1 + 1 2^3 - 1^3 = 3\cdot1^2 + 3\cdot 1 + 1
将以上各式左右分别相加, 可得
( n + 1 ) 3 1 = 3 ( 1 2 + + n 2 ) + 3 ( 1 + + n ) + n (n+1)^3 - 1 = 3(1^2 + \cdots + n^2) + 3(1+\cdots + n) + n
n 3 + 3 n 2 + 3 n = 3 ( 1 2 + + n 2 ) + 3 2 n ( n + 1 ) + n \Longrightarrow n^3 + 3n^2 + 3n = 3(1^2 + \cdots + n^2) + \frac{3}{2}n(n+1) + n
6 ( 1 2 + + n 2 ) = 2 n 3 + 3 n 2 + n = n ( 2 n + 1 ) ( n + 1 ) \Longrightarrow 6(1^2+\cdots + n^2) = 2n^3 + 3n^2 + n = n(2n+1)(n+1)
1 2 + + n 2 = 1 6 n ( 2 n + 1 ) ( n + 1 ) \Longrightarrow 1^2 + \cdots + n^2 = \frac{1}{6}n(2n+1)(n+1)

猜你喜欢

转载自blog.csdn.net/nankai0912678/article/details/106219558