【Flink】FlinkConsumer是如何保证一个partition对应一个thread的

在这里插入图片描述

1.概述

我们都知道flink 连接kafka时,默认是一个partition对应一个thread,它究竟是怎么实现的呢?以及到我们自己定义 RichParallelSourceFunction 的时候如何借鉴这部分代码呢?

我们一起来看一下(基于flink-1.8)
看过flink kafka连接器源码的同学对 FlinkKafkaConsumerBase 应该不陌生(没有看过的也无所谓,我们一起来看就好)
一起来看一下 FlinkKafkaConsumerBase 的 open 方法中关键的部分

//获取fixed topic's or topic pattern 's   partitions of this subtask
final List<KafkaTopicPartition> allPartitions = partitionDiscoverer.discoverPartitions();
		

没错这就是查看Flink Consumer 保证 一个partition对应一个Thread的入口方法

List<KafkaTopicPartition> discoverPartitions() throws WakeupException, ClosedException {
		if (!closed && !wakeup) {
			try {
			...
				// (2) eliminate partition that are old partitions or should not be subscribed by this subtask
				if (newDiscoveredPartitions == null || newDiscoveredPartitions.isEmpty()) {
					throw new RuntimeException("Unable to retrieve any partitions with KafkaTopicsDescriptor: " + topicsDescriptor);
				} else {
					Iterator<KafkaTopicPartition> iter = newDiscoveredPartitions.iterator();
					KafkaTopicPartition nextPartition;
					while (iter.hasNext()) {
						nextPartition = iter.next();
						//从之前已经发现的KafkaTopicPartition中移除,其二可以保证仅仅是这个subtask的partition
						if (!setAndCheckDiscoveredPartition(nextPartition)) {
							iter.remove();
						}
					}
				}

				return newDiscoveredPartitions;
			...
	}

关键性的部分 setAndCheckDiscoveredPartition 方法,点进去

public boolean setAndCheckDiscoveredPartition(KafkaTopicPartition partition) {
		if (isUndiscoveredPartition(partition)) {
			discoveredPartitions.add(partition);
			
			//kafkaPartition与indexOfThisSubTask --对应
			return KafkaTopicPartitionAssigner.assign(partition, numParallelSubtasks) == indexOfThisSubtask;
		}
		return false;
	}

indexOfThisSubtask 表示当前线程是那个subtask,numParallelSubtasks 表示总共并行的subtask 的个数, 当其返回true的时候,表示此partition 属于此indexOfThisSubtask。
下面来看一下具体是怎么划分的

public static int assign(KafkaTopicPartition partition, int numParallelSubtasks) {
		int startIndex = ((partition.getTopic().hashCode() * 31) & 0x7FFFFFFF) % numParallelSubtasks;

		// here, the assumption is that the id of Kafka partitions are always ascending
		// starting from 0, and therefore can be used directly as the offset clockwise from the start index
		return (startIndex + partition.getPartition()) % numParallelSubtasks;
	}

基于topic 和 partition,然后对numParallelSubtasks取余。

那么,当我们自己去定义RichParallelSourceFunction的时候如何去借鉴它呢,直接上代码:

public class WordSource extends RichParallelSourceFunction<Tuple2<Long, Long>> {
	
	private Boolean isRun = true;
	
	@Override
	public void run(SourceContext<Tuple2<Long, Long>> ctx) throws Exception {
		int start = 0;
		int numberOfParallelSubtasks = getRuntimeContext().getNumberOfParallelSubtasks();
		while (isRun) {
			start += 1;
			if (start % numberOfParallelSubtasks == getRuntimeContext().getIndexOfThisSubtask()) {
				ctx.collect(new Tuple2<>(
						Long.parseLong(start+""),
						1L));
				Thread.sleep(1000);
				System.out.println("Thread.currentThread().getName()=========== " + Thread.currentThread().getName());
			}
		}
	}
	
	@Override
	public void cancel() {
		isRun = false;
	}
}

当当当,自此,自己定义个RichParallelSourceFunction也可以并行发数据了,啦啦啦啦!

转载:https://cloud.tencent.com/developer/article/1446321

猜你喜欢

转载自blog.csdn.net/qq_21383435/article/details/105969934
今日推荐