Java高并发编程学习(二)线程同步

简介

当多个线程同时运行时,线程的调度由操作系统决定,程序本身是无法决定的。因此,任何一个线程都有可能在任何指令处被操作系统暂停,然后在某个时间段后继续执行。这个时候,有个单线程模型下不存在的问题就来了:如果多个线程同时读写共享变量,会出现数据不一致的问题,接下来研究一下线程同步与线程安全问题。

线程锁

多线程模型下,要对变量进行读取和写入,结果要正确,必须保证是原子操作。原子操作是指不能被中断的一个或一系列操作,即某一个线程执行时,其他线程必须等待!
通过加锁和解锁的操作,即能实现原子操作,其他线程会因为无法获得锁导致无法进入此指令区间。只有执行线程将锁释放后,其他线程才有机会获得锁并执行。这种加锁和解锁之间的代码块我们称之为临界区(Critical Section),任何时候临界区最多只有一个线程能执行。Java程序使用synchronized关键字对一个对象进行加锁:

synchronized(lock) {
    n = n + 1;
}

synchronized保证了代码块在任意时刻最多只有一个线程能执行。示例如下:

public class Main {
    public static void main(String[] args) throws Exception {
        var add = new AddThread();
        var dec = new DecThread();
        add.start();
        dec.start();
        add.join();
        dec.join();
        System.out.println(Counter.count);
    }
}

class Counter {
    public static final Object lock = new Object();
    public static int count = 0;
}

class AddThread extends Thread {
    public void run() {
        for (int i=0; i<10000; i++) {
            synchronized(Counter.lock) {
                Counter.count += 1;
            }
        }
    }
}

class DecThread extends Thread {
    public void run() {
        for (int i=0; i<10000; i++) {
            synchronized(Counter.lock) {
                Counter.count -= 1;
            }
        }
    }
}

其中这段代码:

synchronized(Counter.lock) { // 获取锁
    ...
} // 释放锁

它表示用Counter.lock实例作为锁,两个线程在执行各自的synchronized(Counter.lock) { … }代码块时,必须先获得锁,才能进入代码块进行。执行结束后,在synchronized语句块结束会自动释放锁。使用synchronized解决了多线程同步访问共享变量的正确性问题。但是,它的缺点是带来了性能下降。因为synchronized代码块无法并发执行。此外,加锁和解锁需要消耗一定的时间,所以,synchronized会降低程序的执行效率。不必担心抛出异常。因为无论是否有异常,都会在synchronized结束处正确释放锁。
总结如何使用synchronized:

  • 找出修改共享变量的线程代码块;
  • 选择一个共享实例作为锁;
  • 使用synchronized(lockObject) { … }。

需要注意的是:多个线程锁住的一定要是同一个对象,才能有锁的效果,因为JVM只保证同一个锁在任意时刻只能被一个线程获取,但两个不同的锁在同一时刻可以被两个线程分别获取。

不需要synchronized的操作

JVM规范定义了几种原子操作:

  • 基本类型(long和double除外)赋值,例如:int n = m;
  • 引用类型赋值,例如:List list = anotherList。

long和double是64位数据,JVM没有明确规定64位赋值操作是不是一个原子操作,不过在x64平台的JVM是把long和double的赋值作为原子操作实现的。

同步方法

让线程自己选择锁对象往往会使得代码逻辑混乱,也不利于封装。更好的方法是把synchronized逻辑封装起来。例如:

public class Counter {
    private int count = 0;

    public void add(int n) {
        synchronized(this) {
            count += n;
        }
    }

    public void dec(int n) {
        synchronized(this) {
            count += n;
        }
    }

    public int get() {
        return count;
    }
}

如果一个类被设计为允许多线程正确访问,我们就说这个类就是“线程安全”的(thread-safe),上面的Counter类就是线程安全的。Java标准库的java.lang.StringBuffer也是线程安全的。还有一些不变类,例如String,Integer,LocalDate,它们的所有成员变量都是final,多线程同时访问时只能读不能写,这些不变类也是线程安全的。最后,类似Math这些只提供静态方法,没有成员变量的类,也是线程安全的。
除了上述几种少数情况,大部分类,例如ArrayList,都是非线程安全的类,我们不能在多线程中修改它们。但是,如果所有线程都只读取,不写入,那么ArrayList是可以安全地在线程间共享的。所以多线程能否安全访问某个非线程安全的实例,需要具体问题具体分析。注:没有特殊说明时,一个类默认是非线程安全的。
当我们锁住的是this实例时,实际上可以用synchronized修饰这个方法。下面两种写法是等价的:

public void add(int n) {
    synchronized(this) { // 锁住this
        count += n;
    } // 解锁
}

等价于

扫描二维码关注公众号,回复: 11202372 查看本文章
public synchronized void add(int n) { // 锁住this
    count += n;
} // 解锁

如果对一个静态方法添加synchronized修饰符,它锁住的是哪个对象?

public synchronized static void test(int n) {
    ...
}

对于static方法,是没有this实例的,因为static方法是针对类而不是实例。但是我们注意到任何一个类都有一个由JVM自动创建的Class实例,因此,对static方法添加synchronized,锁住的是该类的class实例。上述synchronized static方法实际上相当于:

public class Counter {
    public static void test(int n) {
        synchronized(Counter.class) {
            ...
        }
    }
}

死锁

Java的线程锁是可重入的锁。也即是说能在获取到锁以后,继续获取同一个锁,JVM允许同一个线程重复获取同一个锁,这种能被同一个线程反复获取的锁,就叫做可重入锁。
由于Java的线程锁是可重入锁,所以,获取锁的时候,不但要判断是否是第一次获取,还要记录这是第几次获取。每获取一次锁,记录+1,每退出synchronized块,记录-1,减到0的时候,才会真正释放锁。
当两个线程各自持有不同的锁,然后各自试图获取对方手里的锁,造成了双方无限等待下去,这就是死锁。死锁发生后,没有任何机制能解除死锁,只能强制结束JVM进程。因此,在编写多线程应用时,要特别注意防止死锁。如何避免死锁:线程获取锁的顺序要一致。即严格按照先获取lockA,再获取lockB的顺序。例如:

public void dec(int m) {
    synchronized(lockA) { // 先获得lockA的锁
        this.value -= m;
        synchronized(lockB) { // 再获得lockB的锁
            this.another -= m;
        } // 释放lockB的锁
    } // 释放lockA的锁
}

wait和notify

synchronized解决了多线程竞争的问题,但是并没有解决多线程协调的问题。

class TaskQueue {
    Queue<String> queue = new LinkedList<>();

    public synchronized void addTask(String s) {
        this.queue.add(s);
    }

    public synchronized String getTask() {
        while (queue.isEmpty()) {
        }
        return queue.remove();
    }
}

上述代码看上去没有问题:getTask()内部先判断队列是否为空,如果为空,就循环等待,直到另一个线程往队列中放入了一个任务,while()循环退出,就可以返回队列的元素了。但实际上while()循环永远不会退出。因为线程在执行while()循环时,已经在getTask()入口获取了this锁,其他线程根本无法调用addTask(),因为addTask()执行条件也是获取this锁。因此,执行上述代码,线程会在getTask()中因为死循环而100%占用CPU资源。
我们要执行的效果是:

  • 线程1可以调用addTask()不断往队列中添加任务;
  • 线程2可以调用getTask()从队列中获取任务。如果队列为空,则getTask()应该等待,直到队列中至少有一个任务时再返回。因此,多线程协调运行的原则就是:当条件不满足时,线程进入等待状态;当条件满足时,线程被唤醒,继续执行任务。

对于上述TaskQueue,我们先改造getTask()方法,在条件不满足时,线程进入等待状态:

public synchronized String getTask() {
    while (queue.isEmpty()) {
        this.wait();
    }
    return queue.remove();
}

当一个线程执行到getTask()方法内部的while循环时,它必定已经获取到了this锁,此时,线程执行while条件判断,如果条件成立(队列为空),线程将执行this.wait(),进入等待状态。
这里的关键是:wait()方法必须在当前获取的锁对象上调用,这里获取的是this锁,因此调用this.wait()
调用wait()方法后,线程进入等待状态,wait()方法不会返回,直到将来某个时刻,线程从等待状态被其他线程唤醒后,wait()方法才会返回,然后,继续执行下一条语句
即使线程在getTask()内部等待,其他线程如果拿不到this锁,照样无法执行addTask(),怎么办?
这个问题的关键就在于wait()方法的执行机制非常复杂。首先,它不是一个普通的Java方法,而是定义在Object类的一个native方法,也就是由JVM的C代码实现的。其次,必须在synchronized块中才能调用wait()方法,因为wait()方法调用时,会释放线程获得的锁,wait()方法返回后,线程又会重新试图获得锁
因此,只能在锁对象上调用wait()方法。因为在getTask()中,我们获得了this锁,因此,只能在this对象上调用wait()方法:

public synchronized String getTask() {
    while (queue.isEmpty()) {
        // 释放this锁:
        this.wait();
        // 重新获取this锁
    }
    return queue.remove();
}

当一个线程在this.wait()等待时,它就会释放this锁,从而使得其他线程能够在addTask()方法获得this锁。
现在我们面临第二个问题:如何让等待的线程被重新唤醒,然后从wait()方法返回?答案是在相同的锁对象上调用notify()方法,修改addTask()如下:

public synchronized void addTask(String s) {
    this.queue.add(s);
    this.notify(); // 唤醒在this锁等待的线程
}

在往队列中添加了任务后,线程立刻对this锁对象调用notify()方法,这个方法会唤醒一个正在this锁等待的线程(就是在getTask()中位于this.wait()的线程),从而使得等待线程从this.wait()方法返回。

public class Main {
    public static void main(String[] args) throws InterruptedException {
        var q = new TaskQueue();
        var ts = new ArrayList<Thread>();
        for (int i=0; i<5; i++) {
            var t = new Thread() {
                public void run() {
                    // 执行task:
                    while (true) {
                        try {
                            String s = q.getTask();
                            System.out.println("execute task: " + s);
                        } catch (InterruptedException e) {
                            return;
                        }
                    }
                }
            };
            t.start();
            ts.add(t);
        }
        var add = new Thread(() -> {
            for (int i=0; i<10; i++) {
                // 放入task:
                String s = "t-" + Math.random();
                System.out.println("add task: " + s);
                q.addTask(s);
                try { Thread.sleep(100); } catch(InterruptedException e) {}
            }
        });
        add.start();
        add.join();
        Thread.sleep(100);
        for (var t : ts) {
            t.interrupt();
        }
    }
}

class TaskQueue {
    Queue<String> queue = new LinkedList<>();

    public synchronized void addTask(String s) {
        this.queue.add(s);
        this.notifyAll();
    }

    public synchronized String getTask() throws InterruptedException {
        while (queue.isEmpty()) {
            this.wait();
        }
        return queue.remove();
    }
}

这里内部调用了this.notifyAll()而不是this.notify(),使用notifyAll()将唤醒所有当前正在this锁等待的线程,而notify()只会唤醒其中一个(具体哪个依赖操作系统,有一定的随机性)。这是因为可能有多个线程正在getTask()方法内部的wait()中等待,使用notifyAll()将一次性全部唤醒。通常来说,notifyAll()更安全。有些时候,如果我们的代码逻辑考虑不周,用notify()会导致只唤醒了一个线程,而其他线程可能永远等待下去醒不过来了
注意到wait()方法返回时需要重新获得this锁。假设当前有3个线程被唤醒,唤醒后,首先要等待执行addTask()的线程结束此方法后,才能释放this锁,随后,这3个线程中只能有一个获取到this锁,剩下两个将继续等待。
再注意到我们在while()循环中调用wait(),而不是if语句:

public synchronized String getTask() throws InterruptedException {
    if (queue.isEmpty()) {
        this.wait();
    }
    return queue.remove();
}

这种写法实际上是错误的,因为线程被唤醒时,需要再次获取this锁。多个线程被唤醒后,只有一个线程能获取this锁,此刻,该线程执行queue.remove()可以获取到队列的元素,然而,剩下的线程如果获取this锁后执行queue.remove(),此刻队列可能已经没有任何元素了,所以,要始终在while循环中wait(),并且每次被唤醒后拿到this锁就必须再次判断:

while (queue.isEmpty()) {
    this.wait();
}

参考资料

Java核心技术 卷1 基础知识
https://www.liaoxuefeng.com/wiki/1252599548343744

接下来

Java高并发编程学习(一)多线程基础

Java高并发编程学习(二)线程同步

Java高并发编程学习(三)java.util.concurrent包

原创文章 69 获赞 52 访问量 29万+

猜你喜欢

转载自blog.csdn.net/qq_22136439/article/details/104427259