Jensen不等式及其详细证明——Emmm...?Emmm...! EM算法(1)

E m m m . . . ? Emmm...?
E m m m . . . ! Emmm...!
E M 接下来的几篇博客,我们来聊聊传说中的EM算法
J e n s e n E M Jensen不等式将在之后的EM算法的证明中发挥重要的作用,我们先来瞅一瞅


Jensen不等式

f X 假设f为凸函数,X是一个随机变量
则有
E [ f ( X ) ] f [ E ( X ) ] E[f(X)] \ge f[E(X)]
f 进一步地,若f是严格凸函数,则:
E [ f ( X ) ] > f [ E ( X ) ] E[f(X)] \gt f[E(X)]
E [ f ( X ) ] = f [ E ( X ) ] P ( X = E [ X ] ) = 1 E[f(X)] = f[E(X)]成立的条件是P(X=E[X])=1


证明:
: 我们采用数学归纳法:
f ( k = 1 n a k x k ) k = 1 n a k f ( x k ) f\left( \sum_{k=1}^{n}a_{k}x_{k} \right) \le \sum^{n}_{k=1}a_{k}f(x_k)

n = 1 当n=1时
a 1 = 1 f ( a 1 x 1 ) a 1 f ( x 1 ) 有a_{1}=1,因此{\color{green}f(a_{1}x_{1})\le a_{1}f(x_1)}显然成立

n = k 1 ( k 2 ) 递归步,假设n=k-1(k\ge 2)时不等式成立
: 有:
f ( k = 1 n 1 a k x k ) k = 1 n 1 a k f ( x k ) f\left( \sum_{k=1}^{n-1}a_{k}x_{k} \right) \le \sum^{n-1}_{k=1}a_{k}f(x_k)

n = k 只需要证n=k成立
f ( k = 1 n a k x k ) = f ( a n x n + ( 1 a n ) k = 1 n 1 a k 1 a n x k ) ( 1 ) f\left( \sum_{k=1}^{n}a_{k}x_{k} \right)= f\left( a_{n}x_{n} + (1-a_{n})\sum_{k=1}^{n-1}\frac{a_{k}}{1-a_{n}}x_{k} \right) \quad (1)
n ( 1 a n ) 上式将第n项拎出,同时将(1-a_n)提出来,仅是恒等变换而已
: 你问我为何要做此恒等变换,可以想象凸函数的定义:

I C f I I x 1 , x 2 λ ( 0 , 1 ) I是定义在凸集C上地某个区间,设f是定义在区间I上的函数,若在I上的任意两点x_{1}, x_{2}和任意的实数\lambda \in (0, 1),总有
f ( λ x 1 + ( 1 λ ) x 2 ) λ f ( x 1 ) + ( 1 λ ) f ( x 2 ) f\left (\lambda x_{1} + (1-\lambda)x_2\right ) \le \lambda f(x_1) + (1- \lambda)f(x_2)
f I < f 则称f为I上的凸函数,若将定义中的\le 换成 \lt 也成立,对应可称函数f为对应区间上的严格凸函数

( 1 ) λ ( 1 λ ) λ ( 1 λ ) 所以(1)式,即是为了配凑\lambda 和 (1-\lambda),我们配凑是有目的的,目的是为了将\lambda 和 (1-\lambda)提出:

f ( k = 1 n a k x k ) = f ( a n x n + ( 1 a n ) k = 1 n 1 a k 1 a n x k ) a n f ( x n ) + ( 1 a n ) f ( k = 1 n 1 a k 1 a n x k ) ( 2 ) \begin{aligned} f\left( \sum_{k=1}^{n}a_{k}x_{k} \right) &= f\left( a_{n}x_{n} + (1-a_{n})\sum_{k=1}^{n-1}\frac{a_{k}}{1-a_{n}}x_{k} \right) \\ &\le a_{n}f\left(x_{n}\right) + (1-a_{n}) f\left( \sum_{k=1}^{n-1}\frac{a_{k}}{1-a_{n}}x_{k} \right) \end{aligned} \quad (2)

n = k 1 , 接下来,我们用下,之前n=k-1时, 假设的条件即可,即:
f ( k = 1 n 1 a k 1 a n x k ) k = 1 n 1 a k 1 a n f ( x k ) ( 3 ) f\left( \sum_{k=1}^{n-1} {\color{blue}\frac{a_{k}}{1-a_n}} x_{k} \right) \le \sum^{n-1}_{k=1} {\color{blue}\frac{a_{k}}{1-a_n}} f(x_k) \quad (3)
( 3 ) ( 2 ) ( 1 a n ) : 将(3)带入(2)式中,并将公因式(1-a_n)乘入:

f ( k = 1 n a k x k ) = f ( a n x n + ( 1 a n ) k = 1 n 1 a k 1 a n x k ) a n f ( x n ) + ( 1 a n ) f ( k = 1 n 1 a k 1 a n x k ) a n f ( x n ) + ( 1 a n ) k = 1 n 1 a k 1 a n f ( x k ) a n f ( x n ) + k = 1 n 1 a k f ( x k ) k = 1 n a k f ( x k ) \begin{aligned} f\left( \sum_{k=1}^{n}a_{k}x_{k} \right) &= f\left( a_{n}x_{n} + (1-a_{n})\sum_{k=1}^{n-1}\frac{a_{k}}{1-a_{n}}x_{k} \right) \\ &\le a_{n}f\left(x_{n}\right) + (1-a_{n}) f\left( \sum_{k=1}^{n-1}\frac{a_{k}}{1-a_{n}}x_{k} \right) \\ &\le a_{n}f\left(x_{n}\right) + (1-a_{n}) \sum^{n-1}_{k=1} {\color{blue}\frac{a_{k}}{1-a_n}} f(x_k)\\ &\le a_{n}f\left(x_{n}\right) + \sum^{n-1}_{k=1} a_{k} f(x_k)\\ &\le \sum^{n}_{k=1}a_{k}f(x_k) \end{aligned}
n = k ( k 2 ) 所以,n=k(k\ge 2)时,不等式也成立
证毕

原创文章 66 获赞 14 访问量 9093

猜你喜欢

转载自blog.csdn.net/HaoZiHuang/article/details/105169373
今日推荐