Java并发编程 - 线程安全性之原子性(一)

5e945b200001559219201080.jpg (1920×1080)

5e945b200001559219201080.jpg (1920×1080)

AtomicInteger(Long) 源码分析

5e9451450001397519201080.jpg (1920×1080)

5ab05d4c00014b1a19201080.jpg (1920×1080)

5ad6949d0001115c19201080.jpg (1920×1080)

  • 拿当前对象的值和底层的值进行对比,前对象的值和底层的值一致时执行对应的操作,不一样就不停取最新的值,直到相同的时候才执行操作。
  • 所谓CAS(Compare And Swap)即比较(工作内存与主内存)并交换,CAS 演示原子性操作:Atomic 类原码实现的时候用了unsafe 类,unsafe.getAndAddInt(); 核心方法都是compareAndSwapInt,用native标识,说明这是Java底层的方法,值的更新都放在了底层,循环判断,期望值和比较值一致时才会替换。
package com.mmall.concurrency.example.atomic;

import com.mmall.concurrency.annoations.ThreadSafe;
import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
import java.util.concurrent.atomic.AtomicInteger;

@Slf4j
@ThreadSafe
public class AtomicExample1 {

    // 请求总数
    public static int clientTotal = 5000;

    // 同时并发执行的线程数
    public static int threadTotal = 200;

    public static AtomicInteger count = new AtomicInteger(0);

    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newCachedThreadPool();
        final Semaphore semaphore = new Semaphore(threadTotal);
        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    add();
                    semaphore.release();
                } catch (Exception e) {
                    log.error("exception", e);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        log.info("count:{}", count.get());
    }

    private static void add() {
        count.incrementAndGet();
        // count.getAndIncrement();
    }
}

LongAddr 源码分析

  • JDK8 单独新增一个LongAdder类,和AtomicLong 类似, Atomic 类修改类,在高并发情况下,原子操作修改失败率比较高, LongAddr 核心将热点数据分离,它会将AtomicLong里的合一数据 value 分离成一个数组,每个线程访问通过 hash 等算法映射到数组中的其中的数字进行计数,计数的最终结果是这个数组的求和累加,其中热点数据 value 会分离成多个单元cell,每个cell单独管理,将单点的更新压力分散到其他节点上。LongAdder在高并发竞争锁时,会有数据丢失。在序列号生成,全局唯一的数据还是要用AtomicLong。
package com.mmall.concurrency.example.atomic;

import com.mmall.concurrency.annoations.ThreadSafe;
import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.LongAdder;

@Slf4j
@ThreadSafe
public class AtomicExample3 {

    // 请求总数
    public static int clientTotal = 5000;

    // 同时并发执行的线程数
    public static int threadTotal = 200;

    public static LongAdder count = new LongAdder();

    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newCachedThreadPool();
        final Semaphore semaphore = new Semaphore(threadTotal);
        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    add();
                    semaphore.release();
                } catch (Exception e) {
                    log.error("exception", e);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        log.info("count:{}", count);
    }

    private static void add() {
        count.increment();
    }
}

总结

  • 高并发下用LongAdder
  • 低并发下用AtomicLong
  • 对数据准确性要求高用AtomicLong
  • LongAdder准确性会有误差
发布了1005 篇原创文章 · 获赞 1889 · 访问量 89万+

猜你喜欢

转载自blog.csdn.net/Dream_Weave/article/details/105492230