关于java.util.concurrent包的并发处理

  我们都知道,在JDK1.5之前,Java中要进行业务并发时,通常需要有程序员独立完成代码实现,而当针对高质量Java多线程并发程序设计时,为防止死蹦等现象的出现,比如使用java之前的wait()、notify()和synchronized等,每每需要考虑性能、死锁、公平性、资源管理以及如何避免线程安全性方面带来的危害等诸多因素,往往会采用一些较为复杂的安全策略,加重了程序员的开发负担.万幸的是,在JDK1.5出现之后,Sun大神终于为我们这些可怜的小程序员推出了java.util.concurrent工具包以简化并发完成。开发者们借助于此,将有效的减少竞争条件(race conditions)和死锁线程。concurrent包很好的解决了这些问题,为我们提供了更实用的并发程序模型。
  java.util.concurrent下主要的接口和类:
  Executor:具体Runnable任务的执行者。
  ExecutorService:一个线程池管理者,其实现类有多种,比如普通线程池,定时调度线程池ScheduledExecutorService等,我们能把一个
  Runnable,Callable提交到池中让其调度。
  Future:是与Runnable,Callable进行交互的接口,比如一个线程执行结束后取返回的结果等等,还提供了cancel终止线程。
  BlockingQueue:阻塞队列。
  下面我写一个简单的事例程序:
  FutureProxy.java

package org.test.concurrent;
/**
 * <p>Title: LoonFramework</p>
 * <p>Description:利用Future模式进行处理</p>
 * <p>Copyright: Copyright (c) 2007</p>
 * <p>Company: LoonFramework</p>
 * @author chenpeng  
 * @email:[email][email protected][/email] 
 * @version 0.1
 */
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.ThreadFactory;

public abstract class FutureProxy<T> {

    private final class CallableImpl implements Callable<T> {

        public T call() throws Exception {
            return FutureProxy.this.createInstance();
        }
    }

    private static class InvocationHandlerImpl<T> implements InvocationHandler {

        private Future<T> future;
        
        private volatile T instance;
        
        InvocationHandlerImpl(Future<T> future){
            this.future = future;
        }
        
        public Object invoke(Object proxy, Method method, Object[] args)
                throws Throwable {
            synchronized(this){
                if(this.future.isDone()){
                    this.instance = this.future.get();
                }else{
                    while(!this.future.isDone()){
                        try{
                            this.instance = this.future.get();
                        }catch(InterruptedException e){
                            Thread.currentThread().interrupt();
                        }
                    }
                }
                
                return method.invoke(this.instance, args);
            }
        }
    }

    /**
     * 实现java.util.concurrent.ThreadFactory接口
     * @author chenpeng
     *
     */
    private static final class ThreadFactoryImpl implements ThreadFactory {

        public Thread newThread(Runnable r) {
            Thread thread = new Thread(r);
            thread.setDaemon(true);
            return thread;
        }
    }

    private static ExecutorService service = Executors.newCachedThreadPool(new ThreadFactoryImpl());

    protected abstract T createInstance();

    protected abstract Class<? extends T> getInterface();
    
    /**
     * 返回代理的实例
     * @return
     */
    @SuppressWarnings("unchecked")
    public final T getProxyInstance() {
        Class<? extends T> interfaceClass = this.getInterface();
        if (interfaceClass == null || !interfaceClass.isInterface()) {
            throw new IllegalStateException();
        }

        Callable<T> task = new CallableImpl();

        Future<T> future = FutureProxy.service.submit(task);

        return (T) Proxy.newProxyInstance(interfaceClass.getClassLoader(),
                new Class<?>[] { interfaceClass }, new InvocationHandlerImpl(future));
    }
}
package org.test.concurrent;
/**
 * <p>Title: LoonFramework</p>
 * <p>Description:利用Future模式进行处理</p>
 * <p>Copyright: Copyright (c) 2007</p>
 * <p>Company: LoonFramework</p>
 * @author chenpeng  
 * @email:[email][email protected][/email] 
 * @version 0.1
 */
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.ThreadFactory;

public abstract class FutureProxy<T> {

    private final class CallableImpl implements Callable<T> {

        public T call() throws Exception {
            return FutureProxy.this.createInstance();
        }
    }

    private static class InvocationHandlerImpl<T> implements InvocationHandler {

        private Future<T> future;
        
        private volatile T instance;
        
        InvocationHandlerImpl(Future<T> future){
            this.future = future;
        }
        
        public Object invoke(Object proxy, Method method, Object[] args)
                throws Throwable {
            synchronized(this){
                if(this.future.isDone()){
                    this.instance = this.future.get();
                }else{
                    while(!this.future.isDone()){
                        try{
                            this.instance = this.future.get();
                        }catch(InterruptedException e){
                            Thread.currentThread().interrupt();
                        }
                    }
                }
                
                return method.invoke(this.instance, args);
            }
        }
    }

    /**
     * 实现java.util.concurrent.ThreadFactory接口
     * @author chenpeng
     *
     */
    private static final class ThreadFactoryImpl implements ThreadFactory {

        public Thread newThread(Runnable r) {
            Thread thread = new Thread(r);
            thread.setDaemon(true);
            return thread;
        }
    }

    private static ExecutorService service = Executors.newCachedThreadPool(new ThreadFactoryImpl());

    protected abstract T createInstance();

    protected abstract Class<? extends T> getInterface();
    
    /**
     * 返回代理的实例
     * @return
     */
    @SuppressWarnings("unchecked")
    public final T getProxyInstance() {
        Class<? extends T> interfaceClass = this.getInterface();
        if (interfaceClass == null || !interfaceClass.isInterface()) {
            throw new IllegalStateException();
        }

        Callable<T> task = new CallableImpl();

        Future<T> future = FutureProxy.service.submit(task);

        return (T) Proxy.newProxyInstance(interfaceClass.getClassLoader(),
                new Class<?>[] { interfaceClass }, new InvocationHandlerImpl(future));
    }
}

  原来很麻烦的并发处理,现在轻松的得以完成。
  我认为,concurrent的优点在于:
  功能强大且标准化的类库,实现了很多java thread原生api很费时才能实现的功能。
  已经过测试,代码质量有保证,相交自己写代码处理thread,节约了大量的测试时间。
  性能上已经过优化,比如以前通过synchronized在并发量大的时候性能会不好,而concurrent大量用到了非阻塞算法,尽量少用锁减少等待时间。
  在java并发处理中,concurrent已成为毋庸置疑的核心标准。

猜你喜欢

转载自www.cnblogs.com/525jik/p/12702492.html