【映射Map】TreeMap,HashMap,LinkedHashMap

在此致谢小码哥的恋上数据结构,堪称经典中的经典。
在此致谢小码哥的恋上数据结构,堪称经典中的经典。
在此致谢小码哥的恋上数据结构,堪称经典中的经典。

映射的特点:

  • Map 在有些编程语言中也叫做字典(dictionary,比如 Python)
  • Map 中的每一个 Key 是唯一的
  • Map 中的每一个 Key 对应一个 Value

Map的接口定义 Map.java

public interface Map<K, V> {
	int size();
	boolean isEmpty();
	void clear();
	V put(K key, V value);
	V get(K key);
	V remove(K key);
	boolean containsKey(K key);
	boolean containsValue(V value);
	void traversal(Visitor<K, V> visitor);
	
	public static abstract class Visitor<K, V> {
		boolean stop;
		public abstract boolean visit(K key, V value);
	}
}

红黑树 RBTree 实现 TreeMap

通过 RBTree 实现的 TreeMap。

/**
 * 直接由红黑树实现的映射
 */
public class TreeMap<K, V> implements Map<K, V> {
	private static final boolean RED = false;
	private static final boolean BLACK = true;
	private int size;
	private Node<K, V> root;
	private Comparator<K> comparator;
	
	public TreeMap() {
		this(null);
	}
	public TreeMap(Comparator<K> comparator) {
		this.comparator = comparator;
	}
	
	/**
	 * 存放 key 和 value 的红黑树节点类
	 */
	private static class Node<K, V> {
		K key;
		V value;
		boolean color = RED;
		Node<K, V> left;
		Node<K, V> right;
		Node<K, V> parent;
		public Node(K key, V value, Node<K, V> parent) {
			this.key = key;
			this.value = value;
			this.parent = parent;
		}
		public boolean isLeaf() { // 是否为叶子结点
			return left == null && right == null;
		}
		
		public boolean hasTwoChildren() { // 是否有两个子节点
			return left != null && right != null;
		}
		
		public boolean isLeftChild() { // 是否为左节点
			return parent != null && this == parent.left;
		}
		
		public boolean isRightChild() { // 是否为右节点
			return parent != null && this == parent.right;
		}
		
		public Node<K, V> sibling() { // 返回兄弟节点
			if (isLeftChild()) {
				return parent.right;
			}
			
			if (isRightChild()) {
				return parent.left;
			}
			return null;
		}
	}
	
	public int size() {
		return size;
	}

	public boolean isEmpty() {
		return size == 0;
	}

	public void clear() {
		root = null;
		size = 0;
	}

	public V put(K key, V value) {
		KeyNotNullCheck(key); // 传入元素不能为空
		
		// 添加第一个节点
		if (root == null) {
			root = new Node<>(key, value, null);
			size++;

			// 新添加节点之后的处理
			// BST中无需处理,为 AVL树 和 B树提供可覆盖的方法
			afterPut(root);
			return null;
		}
		
		// 添加的不是第一个节点
		// 找到父节点
		Node<K, V> parent = root;
		Node<K, V> node = root;
		int cmp = 0;
		do {
			cmp = compare(key, node.key);
			parent = node;
			if (cmp > 0) {
				node = node.right;
			} else if (cmp < 0) {
				node = node.left;
			} else { // 相等
				// 相等时的操作按需求来定,这里选择了覆盖
				node.key = key;
				V oldValue = node.value;
				node.value = value;
				return oldValue;
			}
		} while (node != null);

		// 通过上面的while循环找到了要插入节点的父节点
		// 看看插入到父节点的哪个位置
		Node<K, V> newNode = new Node(key, value, parent);
		if (cmp > 0) {
			parent.right = newNode;
		} else {
			parent.left = newNode;
		}
		size++;
		
		// 新添加节点之后的处理
		// BST中无需处理,为 AVL树 和 B树提供可覆盖的方法
		afterPut(newNode);
		return null;
	}

	public V get(K key) {
		Node<K, V> node = node(key);
		return node != null ? node.value : null;
	}

	public V remove(K key) {
		return remove(node(key));
	}
	private V remove(Node<K, V> node) {
		if (node == null) return null;
		Node<K, V> oldNode = node;
		size--;
		
		if (node.hasTwoChildren()) { // 度为2的节点
			// 找到后继节点
			Node<K, V> s = successor(node);
			// 用后继节点的值覆盖度为2的节点的值
			node.key = s.key;
			node.value = s.value;
			// 删除后继节点
			// 这里是因为后面必然会删除node节点
			// 所以直接将后继节点赋给node,在后面将它删除
			node = s;
		}
		
		// 删除node节点(node的度必然是1或者0)
		Node<K, V> replacement = node.left != null ? node.left : node.right;
		
		if (replacement != null) { // node是度为1的节点
			// 核心:用子节点替代原节点的位置
			// 更改parent
			replacement.parent = node.parent;
			// 更改parent的left、right的指向
			if (node.parent == null) { // node是度为1的节点并且是根节点
				root = replacement;
			} else if (node == node.parent.left) {
				node.parent.left = replacement;
			} else { // node == node.parent.right
				node.parent.right = replacement;
			}
			
			// 删除节点之后的处理,BST中无需处理,为 AVL树 和 B树提供可覆盖的方法
			afterRemove(replacement);
		} else if (node.parent == null) { // node是叶子节点并且是根节点
			root = null;
			
			// 删除节点之后的处理,BST中无需处理,为 AVL树 和 B树提供可覆盖的方法
			afterRemove(node);
		} else { // node是叶子节点,但不是根节点
			if (node == node.parent.left) { // 是左子树
				node.parent.left = null;
			} else { // node == node.parent.right // 是右子树
				node.parent.right = null;
			}
			
			// 删除节点之后的处理,BST中无需处理,为 AVL树 和 B树提供可覆盖的方法
			afterRemove(node);
		}
		return oldNode.value;
	}
	
	public boolean containsKey(K key) {
		return node(key) != null;
	}

	public boolean containsValue(V value) {
		if(root == null) return false;
		
		Queue<Node<K, V>> queue = new LinkedList<>();
		queue.offer(root);
		
		while(!queue.isEmpty()){
			Node<K, V> node = queue.poll();
			if(valEquals(value, node.value)) return true;
			
			if(node.left != null){
				queue.offer(node.left);
			}
			if(node.right != null){
				queue.offer(node.right);
			}
		}
		return false;
	}
	
	public void traversal(Visitor<K, V> visitor) {
		if (visitor == null) return;
		traversal(root, visitor);
	}
	public void traversal(Node<K, V> node, Visitor<K, V> visitor){
		if(node == null || visitor.stop) return;
		
		traversal(node.left, visitor);
		
		if(visitor.stop) return;
		visitor.visit(node.key, node.value);
		
		traversal(node.right, visitor);
		
	}
	
	private boolean valEquals(V v1, V v2) {
		return v1 == null ? v2 == null : v1.equals(v2);
	}
	
	protected Node<K, V> predecessor(Node<K, V> node) {
		if (node == null) return null;
		
		// 前驱节点在左子树当中(left.right.right.right....)
		Node<K, V> p = node.left;
		if (p != null) {
			while (p.right != null) {
				p = p.right;
			}
			return p;
		}
		
		// 从父节点、祖父节点中寻找前驱节点
		while (node.parent != null && node == node.parent.left) {
			node = node.parent;
		}

		// node.parent == null
		// node == node.parent.right
		return node.parent;
	}
	
	protected Node<K, V> successor(Node<K, V> node) {
		if (node == null) return null;
		
		// 前驱节点在左子树当中(right.left.left.left....)
		Node<K, V> p = node.right;
		if (p != null) {
			while (p.left != null) {
				p = p.left;
			}
			return p;
		}
		
		// 从父节点、祖父节点中寻找前驱节点
		while (node.parent != null && node == node.parent.right) {
			node = node.parent;
		}

		return node.parent;
	}
	
	private Node<K, V> node(K key) {
		Node<K, V> node = root;
		while (node != null) {
			int cmp = compare(key, node.key);
			if (cmp == 0) return node;
			if (cmp > 0) {
				node = node.right;
			} else { // cmp < 0
				node = node.left;
			}
		}
		return null;
	}
	
	private void afterRemove(Node<K, V> node) {
		// 如果删除的节点是红色
		// 或者 用以取代删除节点的子节点是红色
		if (isRed(node)) {
			black(node);
			return;
		}
		
		Node<K, V> parent = node.parent;
		// 删除的是根节点
		if (parent == null) return;
		
		// 删除的是黑色叶子节点【下溢】
		// 判断被删除的node是左还是右
		boolean left = parent.left == null || node.isLeftChild();
		Node<K, V> sibling = left ? parent.right : parent.left;
		if (left) { // 被删除的节点在左边,兄弟节点在右边
			if (isRed(sibling)) { // 兄弟节点是红色
				black(sibling);
				red(parent);
				rotateLeft(parent);
				// 更换兄弟
				sibling = parent.right;
			}
			
			// 兄弟节点必然是黑色
			if (isBlack(sibling.left) && isBlack(sibling.right)) {
				// 兄弟节点没有1个红色子节点,父节点要向下跟兄弟节点合并
				boolean parentBlack = isBlack(parent);
				black(parent);
				red(sibling);
				if (parentBlack) {
					afterRemove(parent);
				}
			} else { // 兄弟节点至少有1个红色子节点,向兄弟节点借元素
				// 兄弟节点的左边是黑色,兄弟要先旋转
				if (isBlack(sibling.right)) {
					rotateRight(sibling);
					sibling = parent.right;
				}
				
				color(sibling, colorOf(parent));
				black(sibling.right);
				black(parent);
				rotateLeft(parent);
			}
		} else { // 被删除的节点在右边,兄弟节点在左边
			if (isRed(sibling)) { // 兄弟节点是红色
				black(sibling);
				red(parent);
				rotateRight(parent);
				// 更换兄弟
				sibling = parent.left;
			}
			
			// 兄弟节点必然是黑色
			if (isBlack(sibling.left) && isBlack(sibling.right)) {
				// 兄弟节点没有1个红色子节点,父节点要向下跟兄弟节点合并
				boolean parentBlack = isBlack(parent);
				black(parent);
				red(sibling);
				if (parentBlack) {
					afterRemove(parent);
				}
			} else { // 兄弟节点至少有1个红色子节点,向兄弟节点借元素
				// 兄弟节点的左边是黑色,兄弟要先旋转
				if (isBlack(sibling.left)) {
					rotateLeft(sibling);
					sibling = parent.left;
				}
				
				color(sibling, colorOf(parent));
				black(sibling.left);
				black(parent);
				rotateRight(parent);
			}
		}
	}
	
	private void afterPut(Node<K, V> node){
		Node<K, V> parent = node.parent;
		
		// 添加的是根节点 或者 上溢到达了根节点
		if (parent == null) {
			black(node);
			return;
		}
		
		// 如果父节点是黑色,直接返回
		if (isBlack(parent)) return;
		
		// 叔父节点
		Node<K, V> uncle = parent.sibling();
		// 祖父节点
		Node<K, V> grand = red(parent.parent);
		if (isRed(uncle)) { // 叔父节点是红色【B树节点上溢】
			black(parent);
			black(uncle);
			// 把祖父节点当做是新添加的节点
			afterPut(grand);
			return;
		}
		
		// 叔父节点不是红色
		if (parent.isLeftChild()) { // L
			if (node.isLeftChild()) { // LL
				black(parent);
			} else { // LR
				black(node);
				rotateLeft(parent);
			}
			rotateRight(grand);
		} else { // R
			if (node.isLeftChild()) { // RL
				black(node);
				rotateRight(parent);
			} else { // RR
				black(parent);
			}
			rotateLeft(grand);
		}
	}
	
	private void rotateLeft(Node<K, V> grand) {
		Node<K, V> parent = grand.right;
		Node<K, V> child = parent.left;
		grand.right = child;
		parent.left = grand;
		afterRotate(grand, parent, child);
	}
	
	private void rotateRight(Node<K, V> grand) {
		Node<K, V> parent = grand.left;
		Node<K, V> child = parent.right;
		grand.left = child;
		parent.right = grand;
		afterRotate(grand, parent, child);
	}
	
	private void afterRotate(Node<K, V> grand, Node<K, V> parent, Node<K, V> child) {
		// 让parent称为子树的根节点
		parent.parent = grand.parent;
		if (grand.isLeftChild()) {
			grand.parent.left = parent;
		} else if (grand.isRightChild()) {
			grand.parent.right = parent;
		} else { // grand是root节点
			root = parent;
		}
		
		// 更新child的parent
		if (child != null) {
			child.parent = grand;
		}
		
		// 更新grand的parent
		grand.parent = parent;
	}

	private Node<K, V> color(Node<K, V> node, boolean color) {
		if (node == null) return node;
		node.color = color;
		return node;
	}
	
	private Node<K, V> red(Node<K, V> node) {
		return color(node, RED);
	}
	
	private Node<K, V> black(Node<K, V> node) {
		return color(node, BLACK);
	}
	
	private boolean colorOf(Node<K, V> node) {
		return node == null ? BLACK : node.color;
	}
	
	private boolean isBlack(Node<K, V> node) {
		return colorOf(node) == BLACK;
	}
	
	private boolean isRed(Node<K, V> node) {
		return colorOf(node) == RED;
	}
	
	private int compare(K k1, K k2) {
		if (comparator != null) {
			return comparator.compare(k1, k2);
		}
		return ((Comparable<K>)k1).compareTo(k2);
	}
	
	private void KeyNotNullCheck(K key) {
		if (key == null) {
			throw new IllegalArgumentException("key must not be null");
		}
	}

}

哈希表实现 HashMap

通过哈希表实现 HashMap

@SuppressWarnings({"unchecked", "rawtypes"})
public class HashMap<K, V> implements Map<K, V> {
	private static final boolean RED = false;
	private static final boolean BLACK = true;
	private int size;
	private Node<K, V>[] table;
	private static final int DEFAULT_CAPACITY = 1 << 4;
	private static final float DEFAULT_LOAD_FACTOR = 0.75f;
	
	public HashMap() {
		table = new Node[DEFAULT_CAPACITY];
	}

	@Override
	public int size() {
		return size;
	}

	@Override
	public boolean isEmpty() {
		return size == 0;
	}

	@Override
	public void clear() {
		if (size == 0) return;
		size = 0;
		for (int i = 0; i < table.length; i++) {
			table[i] = null;
		}
	}

	@Override
	public V put(K key, V value) {
		resize();
		
		int index = index(key);
		// 取出index位置的红黑树根节点
		Node<K, V> root = table[index];
		if (root == null) {
			root = createNode(key, value, null);
			table[index] = root;
			size++;
			fixAfterPut(root);
			return null;
		}
		
		// 添加新的节点到红黑树上面
		Node<K, V> parent = root;
		Node<K, V> node = root;
		int cmp = 0;
		K k1 = key;
		int h1 = hash(k1);
		Node<K, V> result = null;
		boolean searched = false; // 是否已经搜索过这个key
		do {
			parent = node;
			K k2 = node.key;
			int h2 = node.hash;
			if (h1 > h2) {
				cmp = 1;
			} else if (h1 < h2) {
				cmp = -1;
			} else if (Objects.equals(k1, k2)) {
				cmp = 0;
			} else if (k1 != null && k2 != null 
					&& k1 instanceof Comparable
					&& k1.getClass() == k2.getClass()
					&& (cmp = ((Comparable)k1).compareTo(k2)) != 0) {
			} else if (searched) { // 已经扫描了
				cmp = System.identityHashCode(k1) - System.identityHashCode(k2);
			} else { // searched == false; 还没有扫描,然后再根据内存地址大小决定左右
				if ((node.left != null && (result = node(node.left, k1)) != null)
						|| (node.right != null && (result = node(node.right, k1)) != null)) {
					// 已经存在这个key
					node = result;
					cmp = 0;
				} else { // 不存在这个key
					searched = true;
					cmp = System.identityHashCode(k1) - System.identityHashCode(k2);
				}
			}
			
			if (cmp > 0) {
				node = node.right;
			} else if (cmp < 0) {
				node = node.left;
			} else { // 相等
				V oldValue = node.value;
				node.key = key;
				node.value = value;
				node.hash = h1;
				return oldValue;
			}
		} while (node != null);

		// 看看插入到父节点的哪个位置
		Node<K, V> newNode = createNode(key, value, parent);
		if (cmp > 0) {
			parent.right = newNode;
		} else {
			parent.left = newNode;
		}
		size++;
		
		// 新添加节点之后的处理
		fixAfterPut(newNode);
		return null;
	}

	@Override
	public V get(K key) {
		Node<K, V> node = node(key);
		return node != null ? node.value : null;
	}

	@Override
	public V remove(K key) {
		return remove(node(key));
	}

	@Override
	public boolean containsKey(K key) {
		return node(key) != null;
	}

	@Override
	public boolean containsValue(V value) {
		if (size == 0) return false;
		Queue<Node<K, V>> queue = new LinkedList<>();
		for (int i = 0; i < table.length; i++) {
			if (table[i] == null) continue;
			
			queue.offer(table[i]);
			while (!queue.isEmpty()) {
				Node<K, V> node = queue.poll();
				if (Objects.equals(value, node.value)) return true;
				
				if (node.left != null) {
					queue.offer(node.left);
				}
				if (node.right != null) {
					queue.offer(node.right);
				}
			}
		}
		return false;
	}

	@Override
	public void traversal(Visitor<K, V> visitor) {
		if (size == 0 || visitor == null) return;
		
		Queue<Node<K, V>> queue = new LinkedList<>();
		for (int i = 0; i < table.length; i++) {
			if (table[i] == null) continue;
			
			queue.offer(table[i]);
			while (!queue.isEmpty()) {
				Node<K, V> node = queue.poll();
				if (visitor.visit(node.key, node.value)) return;
				
				if (node.left != null) {
					queue.offer(node.left);
				}
				if (node.right != null) {
					queue.offer(node.right);
				}
			}
		}
	}
	/*
	public void print() {
		if (size == 0) return;
		for (int i = 0; i < table.length; i++) {
			final Node<K, V> root = table[i];
			System.out.println("【index = " + i + "】");
			BinaryTrees.println(new BinaryTreeInfo() {
				@Override
				public Object string(Object node) {
					return node;
				}
				
				@Override
				public Object root() {
					return root;
				}
				
				@Override
				public Object right(Object node) {
					return ((Node<K, V>)node).right;
				}
				
				@Override
				public Object left(Object node) {
					return ((Node<K, V>)node).left;
				}
			});
			System.out.println("---------------------------------------------------");
		}
	}
	*/
	
	protected Node<K, V> createNode(K key, V value, Node<K, V> parent) {
		return new Node<>(key, value, parent);
	}
	
	protected void afterRemove(Node<K, V> willNode, Node<K, V> removedNode) { }
	
	private void resize() {
		// 装填因子 <= 0.75
		if (size / table.length <= DEFAULT_LOAD_FACTOR) return;
		
		Node<K, V>[] oldTable = table;
		table = new Node[oldTable.length << 1];

		Queue<Node<K, V>> queue = new LinkedList<>();
		for (int i = 0; i < oldTable.length; i++) {
			if (oldTable[i] == null) continue;
			
			queue.offer(oldTable[i]);
			while (!queue.isEmpty()) {
				Node<K, V> node = queue.poll();
				if (node.left != null) {
					queue.offer(node.left);
				}
				if (node.right != null) {
					queue.offer(node.right);
				}
				
				// 挪动代码得放到最后面
				moveNode(node);
			}
		}
	}
	
	private void moveNode(Node<K, V> newNode) {
		// 重置
		newNode.parent = null;
		newNode.left = null;
		newNode.right = null;
		newNode.color = RED;
		
		int index = index(newNode);
		// 取出index位置的红黑树根节点
		Node<K, V> root = table[index];
		if (root == null) {
			root = newNode;
			table[index] = root;
			fixAfterPut(root);
			return;
		}
		
		// 添加新的节点到红黑树上面
		Node<K, V> parent = root;
		Node<K, V> node = root;
		int cmp = 0;
		K k1 = newNode.key;
		int h1 = newNode.hash;
		do {
			parent = node;
			K k2 = node.key;
			int h2 = node.hash;
			if (h1 > h2) {
				cmp = 1;
			} else if (h1 < h2) {
				cmp = -1;
			} else if (k1 != null && k2 != null 
					&& k1 instanceof Comparable
					&& k1.getClass() == k2.getClass()
					&& (cmp = ((Comparable)k1).compareTo(k2)) != 0) {
			} else {
				cmp = System.identityHashCode(k1) - System.identityHashCode(k2);
			}
			
			if (cmp > 0) {
				node = node.right;
			} else if (cmp < 0) {
				node = node.left;
			}
		} while (node != null);

		// 看看插入到父节点的哪个位置
		newNode.parent = parent;
		if (cmp > 0) {
			parent.right = newNode;
		} else {
			parent.left = newNode;
		}
		
		// 新添加节点之后的处理
		fixAfterPut(newNode);
	}
	
	protected V remove(Node<K, V> node) {
		if (node == null) return null;
		
		Node<K, V> willNode = node;
		
		size--;
		
		V oldValue = node.value;
		
		if (node.hasTwoChildren()) { // 度为2的节点
			// 找到后继节点
			Node<K, V> s = successor(node);
			// 用后继节点的值覆盖度为2的节点的值
			node.key = s.key;
			node.value = s.value;
			node.hash = s.hash;
			// 删除后继节点
			node = s;
		}
		
		// 删除node节点(node的度必然是1或者0)
		Node<K, V> replacement = node.left != null ? node.left : node.right;
		int index = index(node);
		
		if (replacement != null) { // node是度为1的节点
			// 更改parent
			replacement.parent = node.parent;
			// 更改parent的left、right的指向
			if (node.parent == null) { // node是度为1的节点并且是根节点
				table[index] = replacement;
			} else if (node == node.parent.left) {
				node.parent.left = replacement;
			} else { // node == node.parent.right
				node.parent.right = replacement;
			}
			
			// 删除节点之后的处理
			fixAfterRemove(replacement);
		} else if (node.parent == null) { // node是叶子节点并且是根节点
			table[index] = null;
		} else { // node是叶子节点,但不是根节点
			if (node == node.parent.left) {
				node.parent.left = null;
			} else { // node == node.parent.right
				node.parent.right = null;
			}
			
			// 删除节点之后的处理
			fixAfterRemove(node);
		}
		
		// 交给子类去处理
		afterRemove(willNode, node);
		
		return oldValue;
	}
	
	private Node<K, V> successor(Node<K, V> node) {
		if (node == null) return null;
		
		// 前驱节点在左子树当中(right.left.left.left....)
		Node<K, V> p = node.right;
		if (p != null) {
			while (p.left != null) {
				p = p.left;
			}
			return p;
		}
		
		// 从父节点、祖父节点中寻找前驱节点
		while (node.parent != null && node == node.parent.right) {
			node = node.parent;
		}

		return node.parent;
	}
	
	private Node<K, V> node(K key) {
		Node<K, V> root = table[index(key)];
		return root == null ? null : node(root, key);
	}
	
	private Node<K, V> node(Node<K, V> node, K k1) {
		int h1 = hash(k1);
		// 存储查找结果
		Node<K, V> result = null;
		int cmp = 0;
		while (node != null) {
			K k2 = node.key;
			int h2 = node.hash;
			// 先比较哈希值
			if (h1 > h2) {
				node = node.right;
			} else if (h1 < h2) {
				node = node.left;
			} else if (Objects.equals(k1, k2)) {
				return node;
			} else if (k1 != null && k2 != null 
					&& k1 instanceof Comparable
					&& k1.getClass() == k2.getClass()
					&& (cmp = ((Comparable)k1).compareTo(k2)) != 0) {
				node = cmp > 0 ? node.right : node.left;
			} else if (node.right != null && (result = node(node.right, k1)) != null) { 
				return result;
			} else { // 只能往左边找
				node = node.left;
			}
		}
		return null;
	}
	
	/**
	 * 根据key生成对应的索引(在桶数组中的位置)
	 */
	private int index(K key) {
		return hash(key) & (table.length - 1);
	}
	
	private int hash(K key) {
		if (key == null) return 0;
		int hash = key.hashCode();
		return hash ^ (hash >>> 16);
	}
	
	private int index(Node<K, V> node) {
		return node.hash & (table.length - 1);
	}

	private void fixAfterRemove(Node<K, V> node) {
		// 如果删除的节点是红色
		// 或者 用以取代删除节点的子节点是红色
		if (isRed(node)) {
			black(node);
			return;
		}
		
		Node<K, V> parent = node.parent;
		if (parent == null) return;
		
		// 删除的是黑色叶子节点【下溢】
		// 判断被删除的node是左还是右
		boolean left = parent.left == null || node.isLeftChild();
		Node<K, V> sibling = left ? parent.right : parent.left;
		if (left) { // 被删除的节点在左边,兄弟节点在右边
			if (isRed(sibling)) { // 兄弟节点是红色
				black(sibling);
				red(parent);
				rotateLeft(parent);
				// 更换兄弟
				sibling = parent.right;
			}
			
			// 兄弟节点必然是黑色
			if (isBlack(sibling.left) && isBlack(sibling.right)) {
				// 兄弟节点没有1个红色子节点,父节点要向下跟兄弟节点合并
				boolean parentBlack = isBlack(parent);
				black(parent);
				red(sibling);
				if (parentBlack) {
					fixAfterRemove(parent);
				}
			} else { // 兄弟节点至少有1个红色子节点,向兄弟节点借元素
				// 兄弟节点的左边是黑色,兄弟要先旋转
				if (isBlack(sibling.right)) {
					rotateRight(sibling);
					sibling = parent.right;
				}
				
				color(sibling, colorOf(parent));
				black(sibling.right);
				black(parent);
				rotateLeft(parent);
			}
		} else { // 被删除的节点在右边,兄弟节点在左边
			if (isRed(sibling)) { // 兄弟节点是红色
				black(sibling);
				red(parent);
				rotateRight(parent);
				// 更换兄弟
				sibling = parent.left;
			}
			
			// 兄弟节点必然是黑色
			if (isBlack(sibling.left) && isBlack(sibling.right)) {
				// 兄弟节点没有1个红色子节点,父节点要向下跟兄弟节点合并
				boolean parentBlack = isBlack(parent);
				black(parent);
				red(sibling);
				if (parentBlack) {
					fixAfterRemove(parent);
				}
			} else { // 兄弟节点至少有1个红色子节点,向兄弟节点借元素
				// 兄弟节点的左边是黑色,兄弟要先旋转
				if (isBlack(sibling.left)) {
					rotateLeft(sibling);
					sibling = parent.left;
				}
				
				color(sibling, colorOf(parent));
				black(sibling.left);
				black(parent);
				rotateRight(parent);
			}
		}
	}

	private void fixAfterPut(Node<K, V> node) {
		Node<K, V> parent = node.parent;
		
		// 添加的是根节点 或者 上溢到达了根节点
		if (parent == null) {
			black(node);
			return;
		}
		
		// 如果父节点是黑色,直接返回
		if (isBlack(parent)) return;
		
		// 叔父节点
		Node<K, V> uncle = parent.sibling();
		// 祖父节点
		Node<K, V> grand = red(parent.parent);
		if (isRed(uncle)) { // 叔父节点是红色【B树节点上溢】
			black(parent);
			black(uncle);
			// 把祖父节点当做是新添加的节点
			fixAfterPut(grand);
			return;
		}
		
		// 叔父节点不是红色
		if (parent.isLeftChild()) { // L
			if (node.isLeftChild()) { // LL
				black(parent);
			} else { // LR
				black(node);
				rotateLeft(parent);
			}
			rotateRight(grand);
		} else { // R
			if (node.isLeftChild()) { // RL
				black(node);
				rotateRight(parent);
			} else { // RR
				black(parent);
			}
			rotateLeft(grand);
		}
	}
	
	private void rotateLeft(Node<K, V> grand) {
		Node<K, V> parent = grand.right;
		Node<K, V> child = parent.left;
		grand.right = child;
		parent.left = grand;
		afterRotate(grand, parent, child);
	}
	
	private void rotateRight(Node<K, V> grand) {
		Node<K, V> parent = grand.left;
		Node<K, V> child = parent.right;
		grand.left = child;
		parent.right = grand;
		afterRotate(grand, parent, child);
	}
	
	private void afterRotate(Node<K, V> grand, Node<K, V> parent, Node<K, V> child) {
		// 让parent称为子树的根节点
		parent.parent = grand.parent;
		if (grand.isLeftChild()) {
			grand.parent.left = parent;
		} else if (grand.isRightChild()) {
			grand.parent.right = parent;
		} else { // grand是root节点
			table[index(grand)] = parent;
		}
		
		// 更新child的parent
		if (child != null) {
			child.parent = grand;
		}
		
		// 更新grand的parent
		grand.parent = parent;
	}

	private Node<K, V> color(Node<K, V> node, boolean color) {
		if (node == null) return node;
		node.color = color;
		return node;
	}
	
	private Node<K, V> red(Node<K, V> node) {
		return color(node, RED);
	}
	
	private Node<K, V> black(Node<K, V> node) {
		return color(node, BLACK);
	}
	
	private boolean colorOf(Node<K, V> node) {
		return node == null ? BLACK : node.color;
	}
	
	private boolean isBlack(Node<K, V> node) {
		return colorOf(node) == BLACK;
	}
	
	private boolean isRed(Node<K, V> node) {
		return colorOf(node) == RED;
	}
	
	protected static class Node<K, V> {
		int hash;
		K key;
		V value;
		boolean color = RED;
		Node<K, V> left;
		Node<K, V> right;
		Node<K, V> parent;
		public Node(K key, V value, Node<K, V> parent) {
			this.key = key;
			int hash = key == null ? 0 : key.hashCode();
			this.hash = hash ^ (hash >>> 16);
			this.value = value;
			this.parent = parent;
		}
		
		public boolean hasTwoChildren() {
			return left != null && right != null;
		}
		
		public boolean isLeftChild() {
			return parent != null && this == parent.left;
		}
		
		public boolean isRightChild() {
			return parent != null && this == parent.right;
		}
		
		public Node<K, V> sibling() {
			if (isLeftChild()) {
				return parent.right;
			}
			
			if (isRightChild()) {
				return parent.left;
			}
			
			return null;
		}
		
		@Override
		public String toString() {
			return "Node_" + key + "_" + value;
		}
	}
}

HashMap 升级为 LinkedHashMap

在 HashMap 的基础上维护元素的添加顺序,使得遍历的结果遵从添加顺序

@SuppressWarnings({ "rawtypes", "unchecked" })
public class LinkedHashMap<K, V> extends HashMap<K, V> {
	private LinkedNode<K, V> first;
	private LinkedNode<K, V> last;
	
	@Override
	public void clear() {
		super.clear();
		first = null;
		last = null;
	}
	
	@Override
	public boolean containsValue(V value) {
		LinkedNode<K, V> node = first;
		while (node != null) {
			if (Objects.equals(value, node.value)) return true;
			node = node.next;
		}
		return false;
	}
	
	@Override
	public void traversal(Visitor<K, V> visitor) {
		if (visitor == null) return;
		LinkedNode<K, V> node = first;
		while (node != null) {
			if (visitor.visit(node.key, node.value)) return;
			node = node.next;
		}
	}
	
	@Override
	protected void afterRemove(Node<K, V> willNode, Node<K, V> removedNode) {
		LinkedNode<K, V> node1 = (LinkedNode<K, V>) willNode;
		LinkedNode<K, V> node2 = (LinkedNode<K, V>) removedNode;
		
		if (node1 != node2) {
			// 交换linkedWillNode和linkedRemovedNode在链表中的位置
			// 交换prev
			LinkedNode<K, V> tmp = node1.prev;
			node1.prev = node2.prev;
			node2.prev = tmp;
			if (node1.prev == null) {
				first = node1;
			} else {
				node1.prev.next = node1;
			}
			if (node2.prev == null) {
				first = node2;
			} else {
				node2.prev.next = node2;
			}
			
			// 交换next
			tmp = node1.next;
			node1.next = node2.next;
			node2.next = tmp;
			if (node1.next == null) {
				last = node1;
			} else {
				node1.next.prev = node1;
			}
			if (node2.next == null) {
				last = node2;
			} else {
				node2.next.prev = node2;
			}
		}
		
		LinkedNode<K, V> prev = node2.prev;
		LinkedNode<K, V> next = node2.next;
		if (prev == null) {
			first = next;
		} else {
			prev.next = next;
		}
		
		if (next == null) {
			last = prev;
		} else {
			next.prev = prev;
		}
	}
	
	@Override
	protected Node<K, V> createNode(K key, V value, Node<K, V> parent) {
		LinkedNode node = new LinkedNode(key, value, parent);
		if (first == null) {
			first = last = node;
		} else {
			last.next = node;
			node.prev = last;
			last = node;
		}
		return node;
	}
	
	private static class LinkedNode<K, V> extends Node<K, V> {
		LinkedNode<K, V> prev;
		LinkedNode<K, V> next;
		public LinkedNode(K key, V value, Node<K, V> parent) {
			super(key, value, parent);
		}
	}
}

发布了170 篇原创文章 · 获赞 47 · 访问量 2万+

猜你喜欢

转载自blog.csdn.net/weixin_43734095/article/details/104792499