二次抑制载波振幅调制接收系统 Python

快速链接:

二次抑制载波振幅调制接收系统

  • 已知:
    输入信号:
    f ( t ) = s i n ( t ) π t = Sa(t) π ,    < t < f(t) = \displaystyle \frac{sin(t)}{\pi t} = \frac{\text{Sa(t)}}{\pi} , \; -\infty < t < \infty
    调制信号:
    s ( t ) = c o s ( 500 t ) ,    < t < s(t) = cos(500t) , \; -\infty <t<\infty

  • 问: 输出信号 y ( t ) = ? y(t) = ?

二次抑制载波振幅调制接收系统

  • 下式说明:

    • Sa ( t ) / π \text{Sa}(t)/\pi 为非周期, 使用 傅里叶变换分析法
    • 步骤 (详见):
      1. 从图中已知系统函数 H ( j ω ) = g 2 H(j\omega)= g_2 门宽为 2 2 ;
      2. 求输入信号 f ( t ) f(t) 的傅里叶变换 F ( j ω ) F(j\omega) ;
      3. 求调制信号的傅里叶变换 S ( j ω ) S(j\omega) ;
      4. 求零状态响应 y ( t ) y(t) 的傅里叶变换 Y ( j ω ) = F b ( j ω ) H ( j ω ) Y(j\omega)=F_b(j\omega)\cdot H(j\omega) ;
      5. Y ( j ω ) Y (j\omega) 的傅里叶逆变换 y ( t ) = F 1 [ F b ( j ω ) H ( j ω ) ] y(t)=\mathfrak{F} ^{-1}\big[F_b(j\omega)H(j\omega)\big]
    • 其中 δ \delta 卷积特性 δ ( k k 1 ) δ ( k + k 2 ) = δ ( k k 1 + k 2 ) \delta(k-k_1) \star \delta(k+k_2) = \delta(k-k_1+k_2)
      • g ( ω ) g(\omega) 门函数特性 为 0 ,    ω > 1    or    ω < 1 0,\; \omega>1 \; \text{or}\; \omega<-1
  • 可知
    H ( j ω ) = g 2 ( ω ) H(j\omega) = g_2(\omega)
    f ( t ) = Sa(t) π g 2 ( ω ) = F ( j ω ) s ( t ) = c o s ( 500 t ) π [ δ ( ω + 500 ) + δ ( ω 500 ) ] = S ( j ω ) \begin{aligned}f(t)= \frac{\text{Sa(t)}}{\pi} &\longleftrightarrow g_2(\omega)=F(j\omega) \\ s(t) = cos(500t) &\longleftrightarrow \pi \big[\delta(\omega+500)+\delta(\omega-500)\big]=S(j\omega)\end{aligned}

    y ( t ) = f ( t ) × s ( t ) × s ( t ) h ( t ) Y ( j ω ) = 1 4 π 2 F ( j ω ) S ( j ω ) S ( j ω ) H ( j ω ) = 1 4 π 2 g 2 ( ω ) π [ δ ( ω + 500 ) + δ ( ω 500 ) ] π [ δ ( ω + 500 ) + δ ( ω 500 ) ] H ( j ω ) = 1 4 π 2 g 2 ( ω ) π 2 [ δ ( ω + 1000 ) + 2 δ + δ ( ω 1000 ) ] H ( j ω ) = 1 4 g 2 ( ω ) [ δ ( ω + 1000 ) + 2 δ + δ ( ω 1000 ) ] g 2 ( ω ) = 1 2 g 2 ( ω ) y ( t ) = S a ( t ) 2 π = 1 2 f ( t ) \begin{aligned}y(t) & = f(t){\color{blue} \times} s(t){\color{blue} \times} s(t) \star h(t)\\ Y(j\omega) & = {\color{blue}\frac{1}{4 \pi^2}} F(j\omega) {\color{blue}\star} S(j\omega) {\color{blue}\star} S(j\omega) \cdot H(j\omega) \\ &= \frac{1}{4 \pi^2} g_2(\omega) {\color{blue}\star} \pi \big[\delta(\omega+500)+\delta(\omega-500)\big] {\color{blue}\star} \pi \big[\delta(\omega+500)+\delta(\omega-500)\big] \cdot H(j\omega) \\ &= \frac{1}{4 {\color{green}\pi^2}} g_2(\omega) {\color{blue}\star} {\color{green}\pi^2} \big[\delta(\omega+1000)+2\delta+\delta(\omega-1000)\big] \cdot H(j\omega) \\ &= \frac{1}{4} g_2(\omega) {\color{blue}\star} \big[\delta(\omega+1000)+2\delta+\delta(\omega-1000)\big] \cdot g_2(\omega) \\ &= \frac{1}{2}g_2(\omega)\\ y(t) & = \frac{Sa(t)}{2\pi} = \frac{1}{2}f(t) \end{aligned}

    # 导入 需要的 library 库  
    import numpy as np # 科学计算
    import matplotlib.pyplot as plt # 画图工具
    import scipy.signal as sg # 导入 scipy 的 signal 库 重命名为 sg
    # 用 Python 表示 
    t = np.linspace(-4*np.pi,4*np.pi,1601) 
    def draw_graph(t,f,title): # 设置好绘图参数
        plt.plot(t,f,'-') 
        plt.xticks(t[::200],[fr'${int(i/np.pi)}\pi$'for i in t[::200]])
        plt.title(title)
        plt.grid(True)
        plt.show()
    ft = np.sin(t)/(np.pi*t)
    # 开始绘图
    draw_graph(t,ft,r'$f(t)$')

在这里插入图片描述

    st = np.cos(500*t)
    fat = ft*st
    # 开始绘图
    draw_graph(t,fat,r'$f_a(t)$')

output_6_0.png

    fbt = fat*st
    # 开始绘图
    draw_graph(t,fbt,r'$f_b(t)$')

(output_7_0.png)

H ( j ω ) = g 2 ( ω ) sin ( t ) t π = Sa ( t ) π = h ( t ) H(j\omega)=g_2(\omega) \longleftrightarrow \frac{\sin(t)}{t\pi} = \frac{\text{Sa}(t)}{\pi} = h(t)

    ht = np.sin(t)/(t*np.pi)
    yt = sg.convolve(fbt,ht)*(np.pi/200) # 低通滤波器  
    draw_graph(t,yt[800:2401],r'$y(t)$')

(output_9_0.png)

  • 为更清楚展示原理, 取 s ( t ) = cos ( 10 t ) s(t) =\cos(10t)
    st = np.cos(10*t)
    fat2 = ft*st
    # 开始绘图
    draw_graph(t,fat2,r'$f_a(t),\; s(t) =\cos(10t)$')

(output_11_0.png)

    fbt2 = fat2*st
    # 开始绘图
    draw_graph(t,fbt2,r'$f_b(t),\; s(t) =\cos(10t)$')

(output_12_0.png)

    yt2 = sg.convolve(fbt2,ht)*(np.pi/200)
    # 开始绘图
    draw_graph(t,yt2[800:2401],r'$y(t),\; s(t) =\cos(10t)$')

(output_13_0.png)

发布了15 篇原创文章 · 获赞 6 · 访问量 1144

猜你喜欢

转载自blog.csdn.net/Varalpha/article/details/104976645
今日推荐