图解YOLO


YOLO核心思想:从 R-CNNFast R-CNN一直采用的思路是 proposal+分类 ( proposal提供位置信息, 分类提供类别信息)精度已经很高,但是速度还不行。 YOLO提供了另一种更为直接的思路: 直接在输出层回归 bounding box的位置和 bounding box所属的类别(整张图作为网络的输入,把 Object Detection 的问题转化成一个 Regression 问题)。

YOLO的主要特点:

  • 速度快,能够达到实时的要求。在 Titan XGPU上能够达到45帧每秒。
  • 使用全图作为Context信息,背景错误(把背景错认为物体)比较少。
  • 泛化能力强。

在这里插入图片描述

大致流程:

preview

  1. Resize448*448,图片分割得到7*7网格(cell)

  2. CNN提取特征和预测

    卷积部分负责提特征。

    全链接部分负责预测:a) 7*7*2=98bounding box(bbox)的坐标 x c e n t e r , y c e n t e r , w , h x_{center},y_{center},w,h 和是否有物体的 c o n f i d e n c e confidence 。b) 7*7=49cell所属20个物体的概率。

  3. 过滤bbox(通过NMS

    img

1. 网络设计

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XAfDh4Ea-1578016841510)(C:\Users\mi\AppData\Roaming\Typora\typora-user-images\image-20200102141859702.png)]

img

网络结构借鉴了GoogLeNet。24个卷积层,2个全链接层。(用1×1 reduction layers紧跟3×3 convolutional layers 取代Googlenetinception modules

2. 训练

预训练分类网络: 在 ImageNet 1000-class competition dataset上预训练一个分类网络,这个网络是Figure3中的 前20个卷积网络 + average-pooling layer + fully connected layer (此时网络输入是224*224)。

训练检测网络:转换模型去执行检测任务,**《Object detection networks on convolutional feature maps》**提到说在预训练网络中增加卷积和全链接层可以改善性能。在他们例子基础上添加4个卷积层和2个全链接层,随机初始化权重。检测要求细粒度的视觉信息,所以把网络输入也又224*224变成448*448。见Figure3

一幅图片分成7x7个网格(grid cell),某个物体的中心落在这个网格中此网格就负责预测这个物体。
img
最后一层输出为 (7*7)*30的维度。每个 1*1*30的维度对应原图7*7个cell中的一个,1*1*30中含有类别预测和bbox坐标预测。总得来讲就是让网格负责类别信息,bounding box主要负责坐标信息(部分负责类别信息:confidence也算类别信息)。具体如下:

(1) 每个网格(1*1*30维度对应原图中的cell)要预测2个bounding box (图中黄色实线框)的坐标 ( x c e n t e r , y c e n t e r , w , h ) (x_{center},y_{center},w,h) ,其中:中心坐标的 x c e n t e r , y c e n t e r x_{center},y_{center} 相对于对应的网格归一化到0-1之间, w w , h h 用图像的 w i d t h width h e i g h t height 归一化到0-1之间。 每个bounding box除了要回归自身的位置之外,还要附带预测一个 c o n f i d e n c e confidence 值。 这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息 c o n f i d e n c e = P r ( O b j e c t ) I O U p r e d t r u t h confidence=Pr(Object) *IOU_{pred}^{truth} 。其中如果有ground true box(人工标记的物体)落在一个grid cell里,第一项取1,否则取0。 第二项是预测的bounding box和实际的ground truth box之间的IOU值。即:每个bounding box要预测 x c e n t e r , y c e n t e r , w , h , c o n f i d e n c e x_{center},y_{center},w,h,confidence 共5个值 ,2个bounding box共10个值,对应 1*1*30维度特征中的前10个。

img

img

(2) 每个网格还要预测类别信息,论文中有20类。7x7的网格,每个网格要预测2个bounding box和 20个类别概率,输出就是 7x7x(5x2+20)。 (通用公式: SxS个网格,每个网格要预测B个bounding box还要预测C个categories,输出就是SxSx(5*B+C)的一个tensor。 注意:class信息是针对每个网格的,confidence信息是针对每个bounding box的)。

img

损失函数设计:

img

损失函数的设计目标就是让坐标 ( x , y , w , h ) c o n f i d e n c e c l a s s i f i c a t i o n (x,y,w,h),confidence,classification 这个三个方面达到很好的平衡。简单的全部采用了sum-squared error loss来做这件事会有以下不足: a) 8维的localization error和20维的classification error同等重要显然是不合理的; b) 如果一个网格中没有object(一幅图中这种网格很多),那么就会将这些网格中的boxconfidence push到0,相比于较少的有object的网格,这种做法是overpowering的,这会导致网络不稳定甚至发散。 解决方案如下:

  • 更重视8维的坐标预测,给这些损失前面赋予更大的loss weight,记为 λ c o o r d \lambda_{coord} ,在pascal VOC训练中取5。(上图蓝色框)
  • 对没有objectbboxconfidence loss,赋予小的loss weight,记为 λ n o o b j \lambda_{noobj} ,在pascal VOC训练中取0.5。(上图橙色框)
  • objectbboxconfidence loss (上图红色框) 和类别的loss(上图紫色框)的loss weight正常取1。
  • 对不同大小的bbox预测中,相比于大bbox预测偏一点,小box预测偏一点更不能忍受。而sum-square error loss中对同样的偏移loss是一样。 为了缓和这个问题,作者用了一个比较取巧的办法,就是将boxwidthheight取平方根代替原本的heightwidth。 如下图:small bbox的横轴值较小,发生偏移时,反应到y轴上的loss(下图绿色)比big box(下图红色)要大。

img

  • 一个网格预测多个bounding box,在训练时我们希望每个object(ground true box)只有一个bounding box专门负责(一个object 一个bbox)。具体做法是与ground true box(object)IOU最大的bounding box 负责该ground true box(object)的预测。这种做法称作bounding box predictorspecialization(专职化)。每个预测器会对特定(sizes,aspect ratio or classed of object)ground true box预测的越来越好。(个人理解:IOU最大者偏移会更少一些,可以更快速的学习到正确位置)。

3. 测试

Test的时候每个网格预测的class信息 ( P r ( C l a s s i O b j e c t ) ) (Pr(Class_i|Object)) bounding box预测的confidence信息

( P r ( O b j e c t ) I O U p r e d t r u t h ) (Pr(Object)*IOU_{pred}^{truth}) 相乘,就得到每个bounding boxclass-specific confidence score

P r ( C l a s s i O b j e c t ) P r ( O b j e c t ) I O U p r e d t r u t h = P r ( C l a s s i ) I O U p r e d t r u t h Pr(Class_i|Object)*Pr(Object)*IOU_{pred}^{truth}=Pr(Class_i)*IOU_{pred}^{truth}

  • 等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

img

  • img
  • 对每一个网格的每一个bbox执行同样操作:7x7x2 = 98 bbox (每个bbox既有对应的class信息又有坐标信息)

img

img

img

  • 得到每个bboxclass-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS处理,就得到最终的检测结果。

img

缺陷:

  • YOLO对相互靠的很近的物体(挨在一起且中点都落在同一个格子上的情况),还有很小的群体检测效果不好,这是因为一个网格中只预测了两个框,并且只属于一类。
  • 测试图像中,当同一类物体出现的不常见的长宽比和其他情况时泛化能力偏弱。
  • 由于损失函数的问题,定位误差是影响检测效果的主要原因,尤其是大小物体的处理上,还有待加强。

本文图片很多来自PPT:

内容主要参考如下博客:

RCNN学习笔记(6):You Only Look Once(YOLO):Unified, Real-Time Object Detection

You Only Look Once: Unified, Real-Time Object Detection

发布了113 篇原创文章 · 获赞 57 · 访问量 4万+

猜你喜欢

转载自blog.csdn.net/weixin_43593330/article/details/103815507
今日推荐