用分支/合并框架执行并行求和

  分支/合并框架的目的是以递归方式将可以并行的任务拆分成更小的任务,然后将每个子任 务的结果合并起来生成整体结果。它是 ExecutorService 接口的一个实现,它把子任务分配给 线程池(称为 ForkJoinPool )中的工作线程。

import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveTask;
import java.util.stream.LongStream;

/**
 * @ClassName ForkJoinSumCaculator
 * @Description 用分支/合并框架执行并行求和
 * @Author Sue
 * @Create 2020/3/23 11:18
 **/
public class ForkJoinSumCaculator extends RecursiveTask<Long> {

    private final long[] numbers;
    private final int start;
    private final int end;

    public static final long THRESHOLD = 10_000;

    public ForkJoinSumCaculator(long[] numbers,int start,int end){
        this.numbers = numbers;
        this.start = start;
        this.end = end;
    }


    @Override
    protected Long compute() {
        int length = end - start;
        if(length <= THRESHOLD){
        }
        ForkJoinSumCaculator leftTask = new ForkJoinSumCaculator(numbers, start + length / 2, end);
        leftTask.fork();
        ForkJoinSumCaculator rightTask = new ForkJoinSumCaculator(numbers, start + length / 2, end);
        Long rightResult = rightTask.compute();
        Long leftResult = leftTask.join();
        return leftResult + rightResult;
    }

    private long computeSequentially(){
        long sum = 0;
        for (int i = start;i < end;i++){
            sum += numbers[i];
        }
        return sum;
    }
    public static long forkJoinSum(long n) {
        long[] numbers = LongStream.rangeClosed(1, n).toArray();
        ForkJoinTask<Long> task = new ForkJoinSumCalculator(numbers);
        return new ForkJoinPool().invoke(task);
    }
}

​  这里用了一个 LongStream 来生成包含前n个自然数的数组,然后创建一个 ForkJoinTask( RecursiveTask 的父类),并把数组传递给代码所示 ForkJoinSumCalculator 的公共构造函数。最后,创建了一个新的 ForkJoinPool ,并把任务传给它的调用方法 。在ForkJoinPool 中执行时,最后一个方法返回的值就是 ForkJoinSumCalculator 类定义的任务结果。 ​ 请注意在实际应用时,使用多个 ForkJoinPool 是没有什么意义的。正是出于这个原因,一 般来说把它实例化一次,然后把实例保存在静态字段中,使之成为单例,这样就可以在软件中任 何部分方便地重用了。这里创建时用了其默认的无参数构造函数,这意味着想让线程池使用JVM 能够使用的所有处理器。更确切地说,该构造函数将使用 Runtime.availableProcessors 的 返回值来决定线程池使用的线程数。请注意 availableProcessors 方法虽然看起来是处理器, 但它实际上返回的是可用内核的数量,包括超线程生成的虚拟内核。

运行 ForkJoinSumCalculator

  当把 ForkJoinSumCalculator 任务传给 ForkJoinPool 时,这个任务就由池中的一个线程 执行,这个线程会调用任务的 compute 方法。该方法会检查任务是否小到足以顺序执行,如果不 够小则会把要求和的数组分成两半,分给两个新的 ForkJoinSumCalculator ,而它们也由 ForkJoinPool 安排执行。因此,这一过程可以递归重复,把原任务分为更小的任务,直到满足 不方便或不可能再进一步拆分的条件(本例中是求和的项目数小于等于10 000)。这时会顺序计 算每个任务的结果,然后由分支过程创建的(隐含的)任务二叉树遍历回到它的根。接下来会合 并每个子任务的部分结果,从而得到总任务的结果。这一过程如图所示。

使用分支/合并框架的最佳做法

虽然分支/合并框架还算简单易用,不幸的是它也很容易被误用。以下是几个有效使用它的 最佳做法。

  • 对一个任务调用 join 方法会阻塞调用方,直到该任务做出结果。因此,有必要在两个子 任务的计算都开始之后再调用它。否则,你得到的版本会比原始的顺序算法更慢更复杂, 因为每个子任务都必须等待另一个子任务完成才能启动。
  • 不应该在 RecursiveTask 内部使用 ForkJoinPool 的 invoke 方法。相反,你应该始终直 接调用 compute 或 fork 方法,只有顺序代码才应该用 invoke 来启动并行计算。
  • 对子任务调用 fork 方法可以把它排进 ForkJoinPool 。同时对左边和右边的子任务调用 它似乎很自然,但这样做的效率要比直接对其中一个调用 compute 低。这样做你可以为 其中一个子任务重用同一线程,从而避免在线程池中多分配一个任务造成的开销。
  • 调试使用分支/合并框架的并行计算可能有点棘手。特别是你平常都在你喜欢的IDE里面 看栈跟踪(stack trace)来找问题,但放在分支合并计算上就不行了,因为调用 compute 的线程并不是概念上的调用方,后者是调用 fork 的那个。
  • 和并行流一样,你不应理所当然地认为在多核处理器上使用分支/合并框架就比顺序计 算快。我们已经说过,一个任务可以分解成多个独立的子任务,才能让性能在并行化时 有所提升。所有这些子任务的运行时间都应该比分出新任务所花的时间长;一个惯用方 法是把输入/输出放在一个子任务里,计算放在另一个里,这样计算就可以和输入/输出 同时进行。此外,在比较同一算法的顺序和并行版本的性能时还有别的因素要考虑。就 像任何其他Java代码一样,分支/合并框架需要“预热”或者说要执行几遍才会被JIT编 译器优化。这就是为什么在测量性能之前跑几遍程序很重要,我们的测试框架就是这么 做的。同时还要知道,编译器内置的优化可能会为顺序版本带来一些优势(例如执行死 码分析——删去从未被使用的计算)。
  • 对于分支/合并拆分策略还有最后一点补充:你必须选择一个标准,来决定任务是要进一步 拆分还是已小到可以顺序求值。

 

猜你喜欢

转载自www.cnblogs.com/sueyyyy/p/12552411.html