5G科普——5G接入网

在这里插入图片描述图- 移动通信架构图

接入网,在我们无线通信里,一般指无线接入网,也就是通常所说的RAN(Radio Access Network)。说白了,把所有的手机终端,都连接到网络里面的这个功能,就是无线接入网。大家耳熟能详的基站(BaseStation),就是属于无线接入网(RAN)。
在这里插入图片描述图 - 无线基站图

虽然我们从1G开始,历经2G、3G,一路走到4G,号称是技术飞速演进,但整个通信网络的逻辑架构,一直都是:手机→接入网→承载网→核心网→承载网→接入网→手机。

通信过程的本质,就是编码解码、调制解调、加密解密。
在这里插入图片描述图 - 通信过程图

要做的事情就这么多,各种设备各司其职,完成这些事情。通信标准更新换代,无非是设备改个名字,或者挪个位置,功能本质并没有变化。

基站系统,乃至整个无线接入网系统,亦是如此。一个基站,通常包括BBU(主要负责信号调制)、RRU(主要负责射频处理),馈线(连接RRU和天线),天线(主要负责线缆上导行波和空气中空间波之间的转换)。
在这里插入图片描述图 - 基站的组成部分图

在最早期的时候,BBU,RRU和供电单元等设备,是打包塞在一个柜子或一个机房里的。
在这里插入图片描述图 - 基站一体化图

后来,慢慢开始发生变化。怎么变化呢?通信砖家们把它们拆分了。
首先,就是把RRU和BBU先给拆分了。
在这里插入图片描述硬件上不再放在一起,RRU通常会挂在机房的墙上。
在这里插入图片描述BBU有时候挂墙,不过大部分时候是在机柜里。
在这里插入图片描述图 - 机柜里的BBU

再到后来,RRU不再放在室内,而是被搬到了天线的身边(所谓的“RRU拉远”)。
在这里插入图片描述在这里插入图片描述图 - 天线+RRU

这样,我们的RAN就变成了D-RAN,也就是Distributed RAN(分布式无线接入网)。

这样做有什么好处呢?

一方面,大大缩短了RRU和天线之间馈线的长度,可以减少信号损耗,也可以降低馈线的成本。

另一方面,可以让网络规划更加灵活。毕竟RRU加天线比较小,想怎么放,就怎么放。
在这里插入图片描述说到这里,请大家注意:通信网络的发展演进,无非就是两个驱动力,一是为了更高的性能,二是为了更低的成本。

有时候成本比性能更加重要,如果一项技术需要花很多钱,但是带来的回报少于付出,它就很难获得广泛应用。RAN的演进,一定程度上就是成本压力带来的结果。

在D-RAN的架构下,运营商仍然要承担非常巨大的成本。因为为了摆放BBU和相关的配套设备(电源、空调等),运营商还是需要租赁和建设很多的室内机房或方舱。
大量的机房=大量的成本
于是,运营商就想出了C-RAN这个解决方案。

C-RAN,意思是Centralized RAN,集中化无线接入网。这个C,不仅代表集中化,还代表了别的意思:

  • Centralization-集中化
  • Cloud-云化
  • Cooperation-协作
  • Clean-清洁

相比于D-RAN,C-RAN做得更绝。
除了RRU拉远之外,它把BBU全部都集中关押起来了。关在哪了?中心机房(CO,Central Office)。
在这里插入图片描述这一大堆BBU,就变成一个BBU基带池。
C-RAN这样做,非常有效地解决了前文所说的成本问题。
你知道整个移动通信网络中,基站的能耗占比大约多少吗?(72%)
你知道基站里面,空调的能耗占比大约多少吗?(56%)

其他资源占比如下所示:

  • 空调56%
  • 基站设备32%
  • 传输资源4%
  • 蓄电池4%
  • 开关电源4%

传统方式机房的功耗分析,也就是说,运营商的钱,大部分都花在基站上,花在基础设施上,花在电费上。采用C-RAN之后,通过集中化的方式,可以极大减少基站机房数量,减少配套设备(特别是空调)的能耗。
在这里插入图片描述在这里插入图片描述
若干小机房,都进了大机房,机房少了,租金就少了,维护费用也少了,人工费用也跟着减少了。这笔开支节省,对饱受经营压力之苦的运营商来说,简直是久旱逢甘霖。另外,拉远之后的RRU搭配天线,可以安装在离用户更近距离的位置。距离近了,发射功率就低了。

低的发射功率意味着用户终端电池寿命的延长和无线接入网络功耗的降低。说白了,你手机会更省电,待机时间会更长,运营商那边也更省电、省钱!
更重要一点,除了运营商可以省钱之外,采用C-RAN也会带来很大的社会效益,减少大量的碳排放(CO2)。

此外,分散的BBU变成BBU基带池之后,更强大了,可以统一管理和调度,资源调配更加灵活!

C-RAN下,基站实际上是“不见了”,所有的实体基站变成了虚拟基站。所有的虚拟基站在BBU基带池中共享用户的数据收发、信道质量等信息。强化的协作关系,使得联合调度得以实现。小区之间的干扰,就变成了小区之间的协作(CoMP),大幅提高频谱使用效率,也提升了用户感知。

多点协作传输(CoMP,Coordinated Multiple Points Transmission/Reception)是指地理位置上分离的多个传输点,协同参与为一个终端的数据(PDSCH)传输或者联合接收一个终端发送的数据(PUSCH)。

此外,BBU基带池既然都在CO(中心机房),那么,就可以对它们进行虚拟化了!
在这里插入图片描述
虚拟化,就是网元功能虚拟化(NFV)。简单来说,以前BBU是专门的硬件设备,非常昂贵,现在,找个x86服务器,装个虚拟机(VM,Virtual Machines),运行具备BBU功能的软件,然后就能当BBU用啦!

这下子又省了好多钱!正因为C-RAN这种集中化的方式会带来巨大的成本削减,所以,受到运营商的欢迎和追捧(当然,设备商们不会太开心)。

猜猜C-RAN是谁提出来的? 不是设备商,是中国移动,最积极推动C-RAN的,也是中国移动,作为世界上最大的运营商,中国移动把C-RAN奉为至宝。

到了5G时代,接入网又发生了很大的变化。在5G网络中,接入网不再是由BBU、RRU、天线这些东西组成了。而是被重构为以下3个功能实体:

  • CU(Centralized Unit,集中单元)
  • DU(Distribute Unit,分布单元)
  • AAU(Active Antenna Unit,有源天线单元)
    在这里插入图片描述
  • CU:原BBU的非实时部分将分割出来,重新定义为CU,负责处理非实时协议和服务。
  • AAU:BBU的部分物理层处理功能与原RRU及无源天线合并为AAU
  • DU:BBU的剩余功能重新定义为DU,负责处理物理层协议和实时服务。

简而言之,CU和DU,以处理内容的实时性进行区分。
在这里插入图片描述
简单来说,AAU=RRU+天线
再抛一张图给大家,应该能看得更明白一些:
在这里插入图片描述
注意,在图中,EPC(就是4G核心网)被分为New Core(5GC,5G核心网)和MEC(移动网络边界计算平台)两部分。MEC移动到和CU一起,就是所谓的“下沉”(离基站更近)。
在这里插入图片描述
核心网部分功能下沉。之所以要BBU功能拆分、核心网部分下沉,根本原因,就是为了满足5G不同场景的需要。

5G是一个“万金油”网络,除了网速快之外,还有很多的特点,例如时延低、支持海量连接,支持高速移动中的手机,等等。
不同场景下,对于网络的特性要求(网速、时延、连接数、能耗…),其实是不同的,有的甚至是矛盾的。

例如,你看高清演唱会直播,在乎的是画质,时效上,整体延后几秒甚至十几秒,你是没感觉的。而你远程驾驶,在乎的是时延,时延超过10ms,都会严重影响安全。

所以,把网络拆开、细化,就是为了更灵活地应对场景需求。说到这里,就要提到5G的一个关键概念——「切片」。切片,简单来说,就是把一张物理上的网络,按应用场景划分为N张逻辑网络。不同的逻辑网络,服务于不同场景。不同的切片,用于不同的场景,网络切片,可以优化网络资源分配,实现最大成本效率,满足多元化要求。
在这里插入图片描述
可以这么理解,因为需求多样化,所以要网络多样化;因为网络多样化,所以要切片;因为要切片,所以网元要能灵活移动;因为网元灵活移动,所以网元之间的连接也要灵活变化。
在这里插入图片描述
所以,才有了DU和CU这样的新架构。依据5G提出的标准,CU、DU、AAU可以采取分离或合设的方式,所以,会出现多种网络部署形态:
在这里插入图片描述
回传、中传、前传,是不同实体之间的连接:

上图所列网络部署形态,依次为:
① 与传统4G宏站一致,CU与DU共硬件部署,构成BBU单元。
② DU部署在4G BBU机房,CU集中部署。
③ DU集中部署,CU更高层次集中。
④ CU与DU共站集中部署,类似4G的C-RAN方式。

这些部署方式的选择,需要同时综合考虑多种因素,包括业务的传输需求(如带宽,时延等因素)、建设成本投入、维护难度等。

举个例子,如果前传网络为理想传输(有钱,光纤直接到天线那边),那么,CU与DU可以部署在同一个集中点。如果前传网络为非理想传输(没钱,没那么多光纤),DU可以采用分布式部署的方式。
在这里插入图片描述
再例如,如果是车联网这样的低时延要求场景,你的DU,就要想办法往前放(靠近AAU部署),你的MEC、边缘云,就要派上用场。

发布了21 篇原创文章 · 获赞 2 · 访问量 2917

猜你喜欢

转载自blog.csdn.net/weixin_43093289/article/details/105046874
5G