电赛练习之旋转倒立摆

2019年电赛已经结束,虽然结果不能令人满意,但闲下来,还是总结一下电赛学到的东西与失败的地方。这一次先来谈一下一阶旋转倒立摆。

一、题目分析:

拿到一道题目,其实最应该做的事情是分析题目,因为我们往往可以发现某些发挥题是在基础题的基础上进行的,但是,可能某些发挥题需要在基础题的基础上修改结构,我们也可以发现,题目中的某些问题具有相似性,当我们合并同类项的时候,可以把题目的要求变得简单。一下,我粘贴过来2013年一阶旋转倒立摆的题目以及要求: 在这里插入图片描述 在这里插入图片描述在这里插入图片描述 我们很容易知道本题的核心是使得摆杆保持稳定,之后再其基础上进行一些功能的延伸。为了更好地理解题意,我做了如下的分析:

graph TD; 一阶旋转到倒立摆-->手动起摆; 一阶旋转到倒立摆-->自动起摆; 手动起摆-->摆杆的运动; 自动起摆-->摆杆的运动; 摆杆的运动-->电动机的控制;

可以看到,题目中所要求完成的就是通过对一个电机的控制来实现的,控制题的核心还是要落在控制上。历届电子设计大赛经常被人戏称为电子机械设计大赛,虽然控制题的核心是落在控制上,但系统的机械结构也至关重要。此次练习采用的是平衡小车之家的套件,所以省去了搭硬件的很多麻烦。单单就完成题目要求的功能来说,数值分析并不是很必要(强迫症或者冲击国奖者除外)。因此,本篇内容仅仅从代码的角度来进行分析。 俗话说的好,不写注释的程序猿是流氓。我个人很喜欢在主函数的前面写上所用引脚的定义,这样一来方便接线,二来可以避免引脚重复使用,造成不必要的麻烦。

/************************************************
圆周倒立摆实验
ADC:PA1    Motor:PC0 PC1   Pwm:PB4 PB5
编码器A相:PB6  B相:PB7
按键:PA0 2 3 4 
      
					
					 @JackFu
************************************************/

先来谈一谈我程序的风格, 一、 在主函数里我将初始化的函数写在了Board_Init();这个函数里,这样看起来比较方便后期的更改与检查,减少了主函数的代码量,使得主函数看起来简洁、调理。

void Board_Init(void)
{
	delay_init();
	Adc_Init();
	KEY_Init();
	Ecoder_TIM4_Init(); 
	Motor_Init();
	Timer_pwm_Init(999,8);
//	Timer_Init_TIM5(4999,71);
//	TIM_SetCompare2(TIM3,800);
	uart_init(115200);
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
}

二、我一般习惯于建立两个文件夹:HARDWARE、CONTROL。其中前者用来存放于硬件相关的一些配置函数,后者用来放与软件相关的一些配置函数。这样方便后期的维护与移植。

对于其中用到的基本配置,如ADC,ENCODER,MOTOR等等,此处不再赘述。网上有很多的例程与讲解。 该题的核心控制为电机,关键函数如下:

//电机调节函数    (控制电机倒立,很重要)
void Motor_Config(short pwm)
{
	int speed;
	if(start == 1)                         //开启倒立,调节倒立摆平衡
	{
		if(pwm<0 && pwm > -PWM_MAX)
		{
			speed = PWM_MAX + pwm;
			if(speed < 0)
			{
				speed = 0;
			}
			TIM_SetCompare2(TIM3,speed);
			Motor_reverse();
		}
		else if(pwm > 0 && pwm < PWM_MAX)
		{
			speed = PWM_MAX - pwm;
			if(speed > 400)
			{
				speed = 400;
			}
			TIM_SetCompare2(TIM3,speed);
			Motor_Forward();
		}
	}
	else                                   //电位器偏角过大,无法调节,为了安全,关闭电机
	{
		Motor_stop();
	}
}

传入的参数为电机ENCODER,电位器ADC采集值后经过PID处理的数据,具体的处理函数如下:

short PID_Pos_PosCalc(short NextPoint)
{
  register float  iError,dError;
	iError = pos_Set_Pos - NextPoint;        				// 偏差
	pos_SumError += iError*0.2;				    				// 积分
	if(pos_SumError > 1000.0)								//积分限幅1000
		pos_SumError = 1000.0;
	if(pos_SumError < -1000.0)
		pos_SumError = -1000.0;	
	dError = iError - pos_LastError; 						// 当前微分
	pos_LastError = iError;
	
	return(short)(pos_p * iError*0.8 + pos_i * pos_SumError + pos_d * dError);	//返回计算值
}


short PID_Ang_PosCalc(short NextPoint)
{
  register float  iError,dError;
	iError = ang_Set_Pos - NextPoint;        				// 偏差
	ang_SumError += iError;				    				// 积分
	if(ang_SumError > 1000.0)								//积分限幅1000
		ang_SumError = 1000.0;
	if(ang_SumError < -1000.0)
		ang_SumError = -1000.0;	
	dError = iError - ang_LastError; 						// 当前微分
	ang_LastError = iError;
	
	return(short)(ang_p * iError + ang_i * ang_SumError + ang_d * dError);	//返回计算值
}
void Task3(void)
{
	short temp,temp1,temp2;
	temp = 0;
	temp1 = ANG_MIN_VAL;										//角度最大值
	temp2 = ANG_MAX_VAL;										//角度最小值
	
	ang_Cur_Pos = Get_Adc_Average(ADC_Channel_1,15);			//获取当前角度
	
	
	ang_Set_Pos = ANG_MID_VAL;									//将平衡时位置角度应当采样的值赋给设定值
	
	if((ang_Cur_Pos > temp1)&&(ang_Cur_Pos<temp2))
	{
		temp += PID_Ang_PosCalc(ang_Cur_Pos);					//角度还在可以调整的范围内	
		start = 1;		
	}
	
	else
	{															//角度过大,调整不了,为了安全,关机
		start = 0;
	}
	
//	if(++Position_Target>5)
		pos_Cur_Pos = PID_Pos_PosCalc(Encoder),Position_Target=0;
	temp -= pos_Cur_Pos;
//	if(pos_Cur_Pos > 0 && flag == -1)
//	{
//		ANG_MID_VAL = ANG_MID_VAL-5;
//		flag = flag*(-1);
//	}
//	else if(pos_Cur_Pos < 0 && flag == 1)
//	{
//		ANG_MID_VAL = ANG_MID_VAL+5;
//		flag = flag*(-1);
//	}

	Motor_Config(temp);
	printf("%d    ",temp);
	printf("%d\r\n",Encoder);
}

该题的控制采用了双环的PID来进行处理,在进行学习的过程中发现,仅仅采用电位器环的PID可以使得摆杆倒立起来,但整个摆杆会整体顺时针或者逆时针的旋转,并不能满足题目要求。正如前面所述,在考虑机械结构时,要整体考虑,否则当做到这里时,发现需要用双环来进行控制,再改机械结构,会浪费很多的时间。

这里附上源码 (链接: Mycode(双环控制)

猜你喜欢

转载自www.cnblogs.com/yuhuastone/p/12542198.html