Análise aprofundada do princípio do ReentrantLock --- com base no jdk1.8

Análise aprofundada do princípio do ReentrantLock - com base no jdk1.8

O ReentrantLock explica principalmente os métodos de bloqueio e desbloqueio. Vamos ver como ele percebeu a reentrada de trancar e esperar a liberação da trava.

1. Primeiro, observe o método de inicialização

    /**
     * Creates an instance of {@code ReentrantLock}.
     * This is equivalent to using {@code ReentrantLock(false)}.
     */
    public ReentrantLock() {
        sync = new NonfairSync(); // 默认选择非公平锁
    }

    /**
     * Creates an instance of {@code ReentrantLock} with the
     * given fairness policy.
     *
     * @param fair {@code true} if this lock should use a fair ordering policy
     */
    public ReentrantLock(boolean fair) {
        sync = fair ?
        new FairSync()  // 非平锁
        :
        new NonfairSync(); // 公平锁
    }

Existem duas classes internas mencionadas aqui:
1. new FairSync ();
2. new NonfairSync ();
sua principal diferença é o método de bloqueio
1. O NonfairSync tentará primeiro adquirir o bloqueio e, em seguida, será adicionado à fila e entrará no estado de espera após a falha da aquisição
2. FairSync primeiro determine se o bloqueio é ocupada por outros tópicos, em caso afirmativo entra na cauda da espera fila para
a possuir a classe ReentrantLock.Sync, classe ReentrantLock.Sync também herdou a AbstractQueuedSynchronizer
1. ReentrantLock.Sync alguns métodos públicos de classe
2. AbstractQueuedSynchronizer interna mantém um Uma fila implementada por uma lista duplamente vinculada é usada para registrar threads aguardando liberação do bloqueio,

Na operação real, o NonfairSync é usado mais.Aqui está um estudo do
NonfairSync for NonfairSync:

  /**
   * 非公平锁的同步对象
   * Sync object for non-fair locks
   */
  static final class NonfairSync extends Sync {
      private static final long serialVersionUID = 7316153563782823691L;

      /**
       * Performs lock.  Try immediate barge, backing up to normal
       * acquire on failure.
       */
      final void lock() {
          if (compareAndSetState(0, 1))
              setExclusiveOwnerThread(Thread.currentThread());
          else
              acquire(1);
      }

      protected final boolean tryAcquire(int acquires) {
          return nonfairTryAcquire(acquires);
      }
  }
  1. Primeiro, observe o método de bloqueio
        final void lock() {
            //  通过原子操作 改变上锁状态
            if (compareAndSetState(0, 1)) // 变更成功
                setExclusiveOwnerThread(Thread.currentThread()); // 设置持有者为当前线程
            else // 变更成功
                acquire(1);
        }

Abaixo o cartão na ordem de código
1.1 compareAndSetState

    private static final Unsafe unsafe = Unsafe.getUnsafe();

    static {
        try {
            // 获取偏移量
            stateOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("state"));
            headOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("head"));
            tailOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
            waitStatusOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("waitStatus"));
            nextOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("next"));

        } catch (Exception ex) { throw new Error(ex); }
    }

    /**
     *  通过原子操作 改变上锁状态
     * @param expect the expected value
     * @param update the new value
     * @return {@code true} if successful. False return indicates that the actual
     *         value was not equal to the expected value.
     */
    protected final boolean compareAndSetState(int expect, int update) {
        // See below for intrinsics setup to support this  调用本地方法 实现硬件级别的原子操作 cas
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }

Inseguro:
1. A classe principal do CAS (comparação e troca do CAS)
2. A operação da memória através de métodos locais para obter o cas
3. Não opere essa classe no caso de um meio conhecimento

1.2 setExclusiveOwnerThread (Thread.currentThread ()); nada a dizer

1.3 AbstractQueuedSynchronizer.acquire ();

    /**
     * Acquires in exclusive mode, ignoring interrupts.  Implemented
     * by invoking at least once {@link #tryAcquire},
     * returning on success.  Otherwise the thread is queued, possibly
     * repeatedly blocking and unblocking, invoking {@link
     * #tryAcquire} until success.  This method can be used
     * to implement method {@link Lock#lock}.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *        {@link #tryAcquire} but is otherwise uninterpreted and
     *        can represent anything you like.
     */
    public final void acquire(int arg) {
        if (!tryAcquire(arg) && // 再次尝试上锁 回到了  NonfairSync.tryAcquire 方法, tryAcquire 调用了 Sync.nonfairTryAcquire方法
            acquireQueued(
                    addWaiter(Node.EXCLUSIVE), // 链表尾部添加节点
                    arg
                )
            )
            selfInterrupt();
    }

1.3.1 nonfairTryAcquire:

    /**
         * 判断 reentranLock 状态 是否被锁住(state ?= 0)
         * <p>如果没被锁住尝试 原子性上锁 失败返回false</>
         * <p>如果被锁住 判断是否是当前线程持有锁(重入锁的实现) 如果是 state + 1
         * (信号量  记录该线程持有锁的次数。 该线程每次释放所 信号量 -1。 信号量为零 代表 锁被真正释放)</>
         * <p>else 返回false</p>
         * Performs non-fair tryLock.  tryAcquire is implemented in
         * subclasses, but both need nonfair try for trylock method.
         */
        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread(); // 获取当前线程
            int c = getState(); // 获取当锁的状态
            if (c == 0) { // 如果锁已被经释放 再次尝试获取锁
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) { // 如果当前线程为锁的拥有者
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc); // 累加 state 的值  此段代码 实现了重入锁
                return true;
            }
            return false;
        }

1.3.2 código addWaiter:

    /**
     *
     * 把当前线程加入队列 尾部
     *
     * 负责队列初始化
     * Creates and enqueues node for current thread and given mode.
     *
     * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
     * @return the new node
     */
    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) { // 列队尾部不为空
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        // 列队尾部为空 或者  CAS 操作失败
        enq(node);
        return node;
    }

    /**
     * Inserts node into queue, initializing if necessary. See picture above.
     * @param node the node to insert
     * @return node's predecessor
     */
    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // 尾部不为空 不断尝试  CAS 操作
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else { // 尾部为空 尝试构建表结构
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

1.3.3 PurchaseQueued

    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) { // 判断当前节点的 前驱节点 是否为队列头部  如果是 再次尝试上锁(如果头部节点 已经释放所, 则使当前线程成为持有者 并且设置自己为 头部。 同时释放前驱节点)
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt() // 进入等待状态 等待唤醒
                        )
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);  // TODO: 2018/1/29  抛出异常 才会走的到这里。  源码在下面
        }
    }

    /**
     * 检查 是否需要阻塞当前线程
     * Checks and updates status for a node that failed to acquire.
     * Returns true if thread should block. This is the main signal
     * control in all acquire loops.  Requires that pred == node.prev.
     *
     * @param pred node's predecessor holding status
     * @param node the node
     * @return {@code true} if thread should block
     */
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /* 后继节点在等待唤醒  也就是当前节点需要进入等待状态了
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {  // 前驱节点被取消
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.     // 前任被取消则 将前驱节点移出列队
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*  设置前驱节点为 SIGNAL 标记自己为等待唤醒 下次循环到这里之前 如果没有成功拥有锁, 则会进入   if (ws == Node.SIGNAL) 代码段
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this); // 又是一个底层类 实现线程等待
        return Thread.interrupted(); // 返回并 取消等待状态
    }

    /**
     * Cancels an ongoing attempt to acquire.
     * 列队等待中 抛出异常会调用此方法
     * @param node the node
     */
    private void cancelAcquire(Node node) {
        // Ignore if node doesn't exist
        if (node == null)
            return;

        node.thread = null; // 释放线程

        // 前驱节点已被取消  重新定义前驱节点
        Node pred = node.prev;
        while (pred.waitStatus > 0)
            node.prev = pred = pred.prev;

        // predNext is the apparent node to unsplice. CASes below will
        // fail if not, in which case, we lost race vs another cancel
        // or signal, so no further action is necessary.
        Node predNext = pred.next;

        // Can use unconditional write instead of CAS here.
        // After this atomic step, other Nodes can skip past us.
        // Before, we are free of interference from other threads.
        node.waitStatus = Node.CANCELLED; // 取消当前线程 所属的节点(标记为取消),  没有使用 cas  因为 其他线程 不会干扰这里

        // If we are the tail, remove ourselves. 如果我们是尾巴,就把自己弄走
        if (node == tail && compareAndSetTail(node, pred)) {
            compareAndSetNext(pred, predNext, null);
        } else {
            // If successor needs signal, try to set pred's next-link
            // so it will get one. Otherwise wake it up to propagate.
            // 如果node既不是tail,又不是head的后继节点
            // 则将node的前继节点的waitStatus置为SIGNAL
            // 并使node的前继节点指向node的后继节点(相当于将node从队列中删掉了)
            int ws;
            if (pred != head &&
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                 (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                pred.thread != null) {
                Node next = node.next;
                if (next != null && next.waitStatus <= 0)
                    compareAndSetNext(pred, predNext, next);
            } else {
                //  如果node是head的后继节点,则直接唤醒node的后继节点
                unparkSuccessor(node);
            }

            node.next = node; // help GC
        }
    }

    /** 唤醒后继节点
     * Wakes up node's successor, if one exists.
     *
     * @param node the node
     */
    private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0) //置零当前线程所在的结点状态,允许失败。
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);  // 唤醒下级节点
    }

A implementação do método lock é provavelmente a acima

Pelo exposto, você provavelmente pode adivinhar como o desbloqueio funciona. . . Então escreva aqui primeiro. . . .
O resto. . . . Adivinha

Publicado 17 artigos originais · ganhou 24 · visualizações 280,000 +

Acho que você gosta

Origin blog.csdn.net/qq_22956867/article/details/79257998
Recomendado
Clasificación