勾配降下アルゴリズムとその実装 - 簡単な言葉で(再生)

下り坂開始のシーンからこの記事では、最初の勾配降下アルゴリズムの基本的な考え方を提唱し、その後、数学的勾配降下アルゴリズム、勾配降下アルゴリズムの簡単な例の最終的な実現の原理を説明します!

シナリオは、勾配降下ことを前提としてい

勾配降下法の基本的な考え方は、滑降コースに似ています。そのようなシナリオを想定します。山の中に捕捉された男が、あなたは(つまりは谷である山、の最低点を見つける。)山を降りてくる必要があります。しかし、今回は大きな丘の霧、非常に低い可視性が得られ。パスが決定できないダウンしたがって、彼は山ダウンパスを見つけるために、それらの周りの情報を使用する必要があります。この時間は、彼は山をそれらを支援するために、勾配降下アルゴリズムを利用することができます。私たちの目標はトップに登るある山、であれば具体的には、それがこの位置で最も急な場所を見つけることで、参照としての彼の現在位置に、ある、そして山の局所的な高さに向けて落下することは、同じ道を行きます、その後、時間が最も急な方向に向かって上がっていくべきです。そして、すべてのは、繰り返し同じ方法を使用して持っている、いくつかの距離を歩いて、そして最終的には成功した谷に到達することができます。


 
image.png

また、肉眼ではすぐに観察することができない最も急な山をとることができるのではなく、洗練されたツールは、ちょうどこの時点で、この人は最も急な方向を測定する能力を持って、同時に、によって測定します。だから、いくつかの距離を歩いてすべての人は、より多くの時間がかかり最も急な場所、方向を測定するために、ある程度の時間がかかります。だから、太陽が沈む前に、丘の下に到達するためには、測定方向の数を可能な限り低減する必要があります。頻繁に測定された場合、これは選択のジレンマである、あなたは下り坂の方向性を確保することができます絶対的に正しいですが、非常に時間がかかり、測定された場合には少なすぎる、トラックの偏りの危険性があります。だから、方向は間違っていないことを保証するためにダウンし、適切な周波数の測定方向を見つける必要がある、と、あまり消費せずに!

勾配降下

山ダウンと非常によく似たシーンの勾配降下の基本的なプロセス。


まず第一に、我々は、差動機能を。この関数は、山を表しています。私たちの目標は、山のベースである、この関数の最小値を見つけることです。シナリオは前に、最速の方法は、急現在位置及び向きダウン最も検索し、この方向は、与えられた点での関数に相当する見つけることであるに沿って下がることにあると仮定勾配を、勾配の反対方向に向かって、次いで、及びあなたは、関数の値で最速の下落を作ることができます!勾配の方向が最速の方向の変化の関数であるので(後で説明します)
ので、私たちは何度勾配を打つ、と私たちはダウンしている処理と同様である極小値を、到達する最終的にできるように、このメソッドを再利用します。ストライキは、測定手段の方向にシーンで最急勾配方向を決定します。なぜ、勾配の方向が最も急勾配の方向ですか?次に、我々は差動で始まります

微分

差動の意義を見ると、あなたは別の視点を持つことができ、最も一般的な2は、以下のとおりです。

  • 画像機能、点における接線の傾き
  • 機能の変化率
    分化のいくつかの例:


     
    image.png

複数の変数の関数が、各変数区別するための別々すなわち、多変数微分が存在する場合、上記の例では、単一可変差動あります


 
image.png

勾配

多変量一般化勾配は、実際誘導体です。
次の例:


 
image.png

我々は、勾配は、次にコンマで区切られた各可変差動のために別々であることを確認することができ、勾配は、実際には、勾配ベクトル命令を、それらを含む<>です。

微積分勾配が非常に重要な概念である、以前に勾配を意味言及

  • 単変量関数では、勾配は、所与の点での正接関数の傾きを表す、実際微分関数であります
  • 多変数関数では、勾配はベクトルであり、ベクトルの方向を有し、勾配の方向は、最速の方向に固定小数点機能の上昇を指摘しました

这也就说明了为什么我们需要千方百计的求取梯度!我们需要到达山底,就需要在每一步观测到此时最陡峭的地方,梯度就恰巧告诉了我们这个方向。梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。所以我们只要沿着梯度的方向一直走,就能走到局部的最低点!


 
image.png

梯度下降算法的数学解释

上面我们花了大量的篇幅介绍梯度下降算法的基本思想和场景假设,以及梯度的概念和思想。下面我们就开始从数学上解释梯度下降算法的计算过程和思想!


 
image.png

此公式的意义是:J是关于Θ的一个函数,我们当前所处的位置为Θ0点,要从这个点走到J的最小值点,也就是山底。首先我们先确定前进的方向,也就是梯度的反向,然后走一段距离的步长,也就是α,走完这个段步长,就到达了Θ1这个点!


 
image.png

下面就这个公式的几个常见的疑问:

  • α是什么含义?
    α在梯度下降算法中被称作为学习率或者步长,意味着我们可以通过α来控制每一步走的距离,以保证不要步子跨的太大扯着蛋,哈哈,其实就是不要走太快,错过了最低点。同时也要保证不要走的太慢,导致太阳下山了,还没有走到山下。所以α的选择在梯度下降法中往往是很重要的!α不能太大也不能太小,太小的话,可能导致迟迟走不到最低点,太大的话,会导致错过最低点!
 
image.png
  • 为什么要梯度要乘以一个负号?
    梯度前加一个负号,就意味着朝着梯度相反的方向前进!我们在前文提到,梯度的方向实际就是函数在此点上升最快的方向!而我们需要朝着下降最快的方向走,自然就是负的梯度的方向,所以此处需要加上负号
  • 梯度下降算法的实例

    我们已经基本了解了梯度下降算法的计算过程,那么我们就来看几个梯度下降算法的小实例,首先从单变量的函数开始

    单变量函数的梯度下降

    我们假设有一个单变量的函数


     
    image.png

    函数的微分


     
    image.png

    初始化,起点为
     
    image.png

    学习率为


     
    image.png

    根据梯度下降的计算公式
     
    image.png

    我们开始进行梯度下降的迭代计算过程:
     
    image.png

    如图,经过四次的运算,也就是走了四步,基本就抵达了函数的最低点,也就是山底
     
    image.png

    多变量函数的梯度下降

    我们假设有一个目标函数


     
    image.png

    现在要通过梯度下降法计算这个函数的最小值。我们通过观察就能发现最小值其实就是 (0,0)点。但是接下来,我们会从梯度下降算法开始一步步计算到这个最小值!
    我们假设初始的起点为:


     
    image.png

    初始的学习率为:
     
    image.png

    函数的梯度为:


     
    image.png

    进行多次迭代:
     
    image.png

    我们发现,已经基本靠近函数的最小值点
     
     
    image.png
    梯度下降算法的实现
    下面我们将用python实现一个简单的梯度下降算法。场景是一个简单的线性回归的例子:假设现在我们有一系列的点,如下图所示
     
     
    image.png
    我们将用梯度下降法来拟合出这条直线!
    首先,我们需要定义一个代价函数,在此我们选用均方误差代价函数
     
     
    image.png
    此公示中
    m是数据集中点的个数
    ½是一个常量,这样是为了在求梯度的时候,二次方乘下来就和这里的½抵消了,自然就没有多余的常数系数,方便后续的计算,同时对结果不会有影响
    y 是数据集中每个点的真实y坐标的值
    h 是我们的预测函数,根据每一个输入x,根据Θ 计算得到预测的y值,即
     
     

    image.png
     
    我们可以根据代价函数看到,代价函数中的变量有两个,所以是一个多变量的梯度下降问题,求解出代价函数的梯度,也就是分别对两个变量进行微分
     
     

    image.png
    明确了代价函数和梯度,以及预测的函数形式。我们就可以开始编写代码了。但在这之前,需要说明一点,就是为了方便代码的编写,我们会将所有的公式都转换为矩阵的形式,python中计算矩阵是非常方便的,同时代码也会变得非常的简洁。
    为了转换为矩阵的计算,我们观察到预测函数的形式
     
     

    image.png
    我们有两个变量,为了对这个公式进行矩阵化,我们可以给每一个点x增加一维,这一维的值固定为1,这一维将会乘到Θ0上。这样就方便我们统一矩阵化的计算
     
     

    image.png
    然后我们将代价函数和梯度转化为矩阵向量相乘的形式
     
     

    coding time

    首先,我们需要定义数据集和学习率

    import numpy as np
    
    # Size of the points dataset.
    m = 20
    
    # Points x-coordinate and dummy value (x0, x1). X0 = np.ones((m, 1)) X1 = np.arange(1, m+1).reshape(m, 1) X = np.hstack((X0, X1)) # Points y-coordinate y = np.array([ 3, 4, 5, 5, 2, 4, 7, 8, 11, 8, 12, 11, 13, 13, 16, 17, 18, 17, 19, 21 ]).reshape(m, 1) # The Learning Rate alpha. alpha = 0.01 

    接下来我们以矩阵向量的形式定义代价函数和代价函数的梯度

    def error_function(theta, X, y):
        '''Error function J definition.''' diff = np.dot(X, theta) - y return (1./2*m) * np.dot(np.transpose(diff), diff) def gradient_function(theta, X, y): '''Gradient of the function J definition.''' diff = np.dot(X, theta) - y return (1./m) * np.dot(np.transpose(X), diff) 

    最后就是算法的核心部分,梯度下降迭代计算

    def gradient_descent(X, y, alpha):
        '''Perform gradient descent.''' theta = np.array([1, 1]).reshape(2, 1) gradient = gradient_function(theta, X, y) while not np.all(np.absolute(gradient) <= 1e-5): theta = theta - alpha * gradient gradient = gradient_function(theta, X, y) return theta 

    当梯度小于1e-5时,说明已经进入了比较平滑的状态,类似于山谷的状态,这时候再继续迭代效果也不大了,所以这个时候可以退出循环!

    完整的代码如下

    import numpy as np
    
    # Size of the points dataset.
    m = 20
    
    # Points x-coordinate and dummy value (x0, x1). X0 = np.ones((m, 1)) X1 = np.arange(1, m+1).reshape(m, 1) X = np.hstack((X0, X1)) # Points y-coordinate y = np.array([ 3, 4, 5, 5, 2, 4, 7, 8, 11, 8, 12, 11, 13, 13, 16, 17, 18, 17, 19, 21 ]).reshape(m, 1) # The Learning Rate alpha. alpha = 0.01 def error_function(theta, X, y): '''Error function J definition.''' diff = np.dot(X, theta) - y return (1./2*m) * np.dot(np.transpose(diff), diff) def gradient_function(theta, X, y): '''Gradient of the function J definition.''' diff = np.dot(X, theta) - y return (1./m) * np.dot(np.transpose(X), diff) def gradient_descent(X, y, alpha): '''Perform gradient descent.''' theta = np.array([1, 1]).reshape(2, 1) gradient = gradient_function(theta, X, y) while not np.all(np.absolute(gradient) <= 1e-5): theta = theta - alpha * gradient gradient = gradient_function(theta, X, y) return theta optimal = gradient_descent(X, y, alpha) print('optimal:', optimal) print('error function:', error_function(optimal, X, y)[0,0]) 

    运行代码,计算得到的结果如下


     
    image.png

    所拟合出的直线如下


     
    image.png

    小结

    至此,我们就基本介绍完了梯度下降法的基本思想和算法流程,并且用python实现了一个简单的梯度下降算法拟合直线的案例!
    最后,我们回到文章开头所提出的场景假设:
    这个下山的人实际上就代表了反向传播算法,下山的路径其实就代表着算法中一直在寻找的参数Θ,山上当前点的最陡峭的方向实际上就是代价函数在这一点的梯度方向,场景中观测最陡峭方向所用的工具就是微分 。在下一次观测之前的时间就是有我们算法中的学习率α所定义的。
    可以看到场景假设和梯度下降算法很好的完成了对应!



    作者:六尺帐篷
    链接:https://www.jianshu.com/p/c7e642877b0e
    来源:简书
    简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

おすすめ

転載: www.cnblogs.com/Betty1997/p/10931345.html
おすすめ