Discrete Mathematics-Syllabus-01-Propositional Logic

1. Equivalent calculus and reasoning calculus of propositional logic

reference

Summary of discrete mathematics knowledge points (5): implication; reasoning theory of proposition; method of logical deduction; proof of validity of reasoning

1.1 Proposition

命题: The declarative sentence we make to the determined object is called a proposition (propositions and statements proposition or statement). The proposition is true when the judgment is true, otherwise it is false.

It’s raining today is a proposition √
What are you doing non-declarative X
I only shave everyone who doesn’t shave themselves Paradox X

原子命题: Propositions that do not contain logical connectives are usually called atomic propositions or atoms
复合命题: Propositions composed of atomic propositions and logical connectives are called compound propositions (compositive propositions or compound statements).

1.2 Commonly used connectives

否定: symbol ¬ \neg¬ is called a negative connective
合取: the symbol∧ \wedge is called the conjunction conjunction
析取: symbol∨ \vee is called a disjunctive connective.
蕴含或条件: symbol→ \to called entailment or conditional connective.
双向蕴含或等价: symbol↔ \leftrightarrow is called a double implication or equivalent connective.
insert image description here

Connective Priority
( ) ()() > ¬ \neg ¬ > ∧ \wedge > ∨ \vee > → \to > ↔ \leftrightarrow

1.3 Proposition formula

命题常元: Represents a specific simple proposition
命题变元: Represents an arbitrary proposition, a variable whose value is true or false
命题公式: an expression containing propositional variables. That is, P ∨ QP \vee QPQ is a propositional formula

公式的赋值
Definition: If the proposition formula AAAll propositional variables contained in A are p 1 , p 2 , p 3 , p 4 ... pn p_1,p_2,p_3,p_4...p_np1,p2,p3,p4pn, give p 1 , p 2 , p 3 , p 4 ... pn p_1, p_2, p_3, p_4 ... p_np1,p2,p3,p4pnSpecify a set of truth values, called AAAn interpretation or assignment of A. MakeAAThe assignment of the truth value of A to true is called a true assignment, and the assignment that makes the truth value of A false is a false assignment.

指派或赋值:用α , β \alpha,\betaa ,β etc. means whenAAA pair value statusα \alphaWhen α is true, it is said to assignα \alphaα SeishinAAA , orα \alphaα isAAThe true assignment of A. Denote asα ( A ) = 1 \alpha\left(A\right)=1a(A)=1
for all possible assignments, formulaAAThe value of A can be described by the following table, the truth table

真值表: A list of the values ​​of a propositional formula under all possible assignments, which contains n variants, has 2 to the nth power of assignments.
insert image description here

Classification of Propositional Formulas-Tautologies-Contradiction-Satisfiable Forms

A is said to be a tautology or perpetual truth if the value assigned to A in all its cases is true
If the value assigned to A in all its cases is false, then A is said to be a contradiction If there is at least one assignment
that can make the truth value of A true, then A is said to be satisfiable
insert image description here

Equivalence relation - logically equivalent logically equivalent

逻辑等价: When the propositional formula A ↔ BA \leftrightarrow BAWhen B is a tautology, it is calledAAA is logically equivalent toBBB , denoted asA ⇔ BA \Leftrightarrow BAB
注意: A ↔ B A \leftrightarrow B AB A ⇔ B A \Leftrightarrow B AB is differentiated, symbolA ↔ BA \leftrightarrow BAB is a logical connective and is an operator. AndA ⇔ BA \Leftrightarrow BAB is a relation symbol, indicating the logical equivalence relationship between A and B.
insert image description here
insert image description here
insert image description here

1.4 Equivalence Calculus and Reasoning of Propositions

basic equivalence

(1) Double negation law ¬ ¬ ⇔ A \neg \neg \Leftrightarrow A¬¬A
(2)幂等律 A ∧ A ⇔ A , A ∨ A ⇔ A A \wedge A \Leftrightarrow A,A \vee A \Leftrightarrow A AAA,AAA
(3)交换律 A ∧ B ⇔ B ∧ A , A ∨ B ⇔ B ∨ A A \wedge B \Leftrightarrow B \wedge A, A \vee B \Leftrightarrow B \vee A ABBA,ABBA
(4)结合律
A ∧ ( B ∧ C ) ⇔ ( A ∧ B ) ∧ C A \wedge (B \wedge C )\Leftrightarrow (A \wedge B) \wedge C A(BC)(AB)C,
A ∨ ( B ∨ C ) ⇔ ( A ∨ B ) ∨ C A \vee (B \vee C )\Leftrightarrow (A \vee B) \vee C A(BC)(AB)C
A ↔ ( B ↔ C ) ⇔ ( A ↔ B ) ↔ C A \leftrightarrow (B \leftrightarrow C )\Leftrightarrow (A \leftrightarrow B) \leftrightarrow C A(BC)(AB)C
(5)分配律
A ∧ ( B ∨ C ) ⇔ ( A ∧ B ) ∨ ( A ∧ C ) A \wedge (B \vee C )\Leftrightarrow (A \wedge B) \vee (A \wedge C) A(BC)(AB)(AC)
A ∨ ( B ∧ C ) ⇔ ( A ∨ B ) ∧ ( A ∨ C ) A \vee (B \wedge C )\Leftrightarrow (A \vee B) \wedge (A \vee C) A(BC)(AB)(AC)
A → ( B → C ) ⇔ ( A → B ) → ( A → C ) A \rightarrow (B \rightarrow C) \Leftrightarrow (A \rightarrow B) \rightarrow (A \rightarrow C) A(BC)(AB)(AC)
(6)德摩根律 ¬ ( A ∧ B ) ⇔ ¬ A ∨ ¬ B , ¬ ( A ∨ B ) ⇔ ¬ A ∧ ¬ B \neg (A \wedge B) \Leftrightarrow \neg A \vee \neg B , \neg (A \vee B) \Leftrightarrow \neg A \wedge \neg B ¬(AB)¬A¬B,¬(AB)¬A¬B
(7)吸收律 A ∧ ( A ∨ B ) ⇔ A , A ∨ ( A ∧ B ) ⇔ A A \wedge (A \vee B )\Leftrightarrow A , A \vee (A \wedge B ) \Leftrightarrow A A(AB)A,A(AB)A
(8)零律 A ∨ 1 ⇔ 1 , A ∧ 0 ⇔ 0 A \vee 1 \Leftrightarrow 1 , A \wedge 0 \Leftrightarrow 0 A11,A00
(9)同一律 A ∧ 1 ⇔ A , A ∨ 0 ⇔ A A \wedge 1 \Leftrightarrow A , A \vee 0 \Leftrightarrow A A1A,A0A
(10)subtractA ∨ ¬ A ⇔ 1 A \vee \neg A \LeftrightarrowA¬A1
(11) Law of ContradictionA ∧ ¬ A ⇔ 0 A \wedge \neg A \Leftrightarrow 0A¬A0
(12) implies the equivalenceA → B ⇔ ¬ A ∨ BA \to B \Leftrightarrow \neg A \vee BAB¬AB
(13) Equivalent Equivalence
A ↔ B ⇔ ( A → B ) ∧ ( B → A ) A \leftrightarrow B \Leftrightarrow (A \to B) \wedge (B \to A)AB(AB)(BA)
A ↔ B ⇔ ( ¬ A ∨ B ) ∧ ( ¬ B ∨ A ) A \leftrightarrow B \Leftrightarrow (\neg A \vee B) \wedge (\neg B \vee A) AB(¬AB)(¬BA)
A ↔ B ⇔ ( A ∧ B ) ∨ ( ¬ A ∧ ¬ B ) A \leftrightarrow B \Leftrightarrow (A \wedge B) \vee (\neg A \wedge \neg B) AB(AB)(¬A¬ B )
(14) Hypothetical translocationA → B ⇔ ¬ B → ¬ AA \to B \Leftrightarrow \neg B \to \neg AAB¬B¬ A
(15) Equivalent Negative EquivalentA ↔ B ⇔ ¬ A ↔ ¬ BA \leftrightarrow B \Leftrightarrow \neg A \leftrightarrow \neg BAB¬A¬B
(16)归谬论 ( A → B ) ∧ ( A → ¬ B ) ⇔ ¬ A (A \to B)\wedge (A \to \neg B) \Leftrightarrow \neg A (AB)(A¬B)¬A

insert image description here
insert image description here

logically implies tautology

When the propositional formula A → BA \to BAB is a tautology, calledAAA logically impliesBBB , denoted asA ⇒ BA \Rightarrow BAB , need to pay attention to tautology entailment⇒ \Rightarrow with common implication→ \rightarrow relationship.
insert image description here

insert image description here

insert image description here

insert image description here

tautological implication pushes to

insert image description here

⇒ \Rightarrow is the propositional formulaAAA and propositional formulaBBThe reasoning relation of B ,→ \rightarrow is the connection relation of two atomic propositions.
insert image description here

insert image description here

insert image description here

insert image description here

insert image description here

insert image description here

Resolution

insert image description here

Resolution is the method by which computers reason
insert image description here

1.5 Relationship between propositional formula and truth table

For any dependent proposition variable p 1 , p 2 , p 3 , p 4 …pn p_1,p_2,p_3,p_4…p_np1,p2,p3,p4pnThe propositional formula AAFor A , p 1 , p 2 , p 3 , p 4 … pn p_1,p_2,p_3,p_4…p_np1,p2,p3,p4pnThe truth value of is according to the propositional formula AAThe dateAA_The truth value of A , thus establishing fromp 1 , p 2 , p 3 , p 4 …pn p_1,p_2,p_3,p_4…p_np1,p2,p3,p4pnto AAA 's truth table.
Conversely, if given byp 1 , p 2 , p 3 , p 4 … pn p_1,p_2,p_3,p_4…p_np1,p2,p3,p4pnto AAThe truth table of A , the propositional formula AAcan be written by the following methodAp 1 , p 2 , p 3 , p 4 ... pn p_1, p_2, p_3, p_4...p_np1,p2,p3,p4pnlogical expression of .

written by column T

insert image description here

written by column F

insert image description here
insert image description here

1.6 The complete set of connectives

Reference:
[Discrete Mathematics] Mathematical Logic Chapter 1 Propositional Logic (4) The Complete Set of Connectives

complete set

insert image description here

Basic concept of duality

insert image description here

1.7 Paradigm

Paradigm definition and generation steps

insert image description here

insert image description here

Principal disjunctive and principal conjunctive normal forms

insert image description here

Master disjunctive normal form:

Assuming that a propositional formula A contains n propositional variables, if the simple conjunctions in the disjunctive normal form of A are all minimal terms, then the disjunctive normal form is called the principal disjunctive normal form of A.

  若干个极小项的析取(并集)。

Primary Conjunctive Normal Form:

Assuming that a propositional formula A contains n propositional variables, if the simple analytic forms in the disjunctive normal form of A are all maximal terms, then the disjunctive normal form is called the principal disjunctive normal form of A.

若干个极大项的合取(交集)。

Maximum term, minimum term:
insert image description here

insert image description here

insert image description here
insert image description here
insert image description here
insert image description here
insert image description here

Guess you like

Origin blog.csdn.net/m0_38139250/article/details/130269076