位置指纹法的基本概念

位置指纹法的基本概念

“位置指纹”把实际环境中的位置和某种“指纹”联系起来,一个位置对应一个独特的指纹。这个指纹可以是单维或多维的,比如待定位设备在接收或者发送信息,那么指纹可以是这个信息或信号的一个特征或多个特征(最常见的是信号强度)。如果待定位设备是在发送信号,由一些固定的接收设备感知待定位设备的信号或信息然后给它定位,这种方式常常叫做远程定位或者网络定位。如果是待定位设备接收一些固定的发送设备的信号或信息,然后根据这些检测到的特征来估计自身的位置,这种方式可称为自身定位。待定位移动设备也许会把它检测到的特征传达给网络中的服务器节点,服务器可以利用它所能获得的所有信息来估计移动设备的位置(翻译存疑...),这种方式可称为混合定位。在所有的这些方式中,都需要把感知到的信号特征拿去匹配一个数据库中的信号特征,这个过程可以看作一个模式识别的问题。

位置指纹由什么组成?

位置指纹可以是多种类型的,任何“位置独特”的(对区分位置有帮助的)特征都能被用来做为一个位置指纹。比如某个位置上通信信号的多径结构、某个位置上是否能检测到接入点或基站、某个位置上检测到的来自基站信号的RSS(接收信号强度)、某个位置上通信时信号的往返时间或延迟,这些都能作为一个位置指纹,或者也可以将其组合起来作为位置指纹。下面我们介绍两种最常用的信号特征(Bahl and Padmanabhan, 2000; Pahlavan and Krishnamurthy 2002):多径结构、RSS。

多径结构

载频比较大(比如大于500Mhz)的无线电信号的传播可以近似看作是光学射线的传播(Pahlavan and Krishnamurthy 2002)。无线电信号传播时,这些“射线”可以在光滑的平面(比如建筑物的墙壁、地板)上进行反射,遇到锐利的边缘会发生衍射,遇到小型的物体(比如树叶)会发生散射。发射源发出的无线电信号可以通过多条路径传播到同一位置,因此在一个位置上会接收到多条射线,每条射线有不同的能量强度和时延。时延取决于射线传播的距离,强度取决于距离和具体的传播情况(反射、衍射等)。每条到达接收器的射线称为一个多径分量,信道的多径结构指的是这一组(多条射线)信号强度和时延。多径结构也称作功率时延分布,图1是一个典型的功率时延分布的例子,其中,有6个有效的多径分量,功率和时延分别为β1β1,β2β2,β3β3,β4β4,β5β5,β6β6和τ1τ1,τ2τ2,τ3τ3,τ4τ4,τ5τ5,τ6τ6。


图1 功率时延分布

如果信号的带宽足够大(比如使用直接序列扩频技术或者超宽带技术),那么在接收器上可以分解和处理各个多径分量。某个位置上得到的多径结构取决于实际的环境,是独特的,能够被用来作为位置指纹。Ahonen and Eskelinen (2003)提出了这种方法定位3G UMTS网络中的手机,他们的研究结果指出,使用这样的多径结构作为位置指纹可以达到67%的情况下25m以内的定位精度,以及95%的情况下188m的定位精度,这样的定位性能满足了FCC的关于手机定位的E-911要求。

接收信号强度(RSS)

信号的RSS或者接收功率取决于接收器的位置。RSS的获取很简单,因为它是大多数无线通信设备正常运行中所必需的。很多通信系统需要RSS信息用来感知链路的质量,实现切换,适应传输速率等功能。RSS不受信号带宽的影响,没必要高的带宽(大多数通信方式的信号带宽都比较窄),因此RSS是一个很受欢迎的信号特征,并广泛应用于定位中。

假设有一个固定的信号发射源,在离它不同距离的位置上的平均RSS的衰减(in db)和距离的对数成正比,在最简单的情况下,RSS可以表示为:

RSS=Pt−K−10αlog10dRSS=Pt−K−10αlog10⁡d

其中,αα称为路径损耗指数,PtPt为发送功率,KK是一个取决于环境和频率的常数。RSS可以被用来计算移动设备与AP(或基站)之间的距离,那么这个提取出来的距离是否可以用来做移动设备的三边角测量从而定位呢,可以,但是定位误差可能会很大,因为RSS的变动范围可能会很大(注意上面的公式中RSS指的是某个距离的可能RSS的平均),这是由实际环境的影响造成的(称为阴影衰落)。因此这种基于RSS测距的三边角方法并不是一个好的解决方案。

然而,如果一个移动设备能接收到来自多个发射源的信号,或者固定的多个基站都能感知到同一个移动设备,那么我们也许可以使用来自多个发射源或者多个接收器的RSS组成一个RSS向量,作为和位置相联系的指纹。这个就是本文描述的典型的WiFi位置指纹。大多数WiFi的网卡可以测得来自多个AP的RSS(可能是依次测量)。现在在大多数室内场景,移动设备常常可以检测到多个AP,因此使用来自多个AP的RSS作为位置指纹是有意义的,后文以此方法为基础。

注意到RSS本身就是在一段时间内计算或测得的,因此只采集一个RSS样本是不合理的。在WiFi网络中,AP常常要发送一个beacon帧,包含了一些网络信息、服务组ID(无线网络的名字)、支持的传输速率,以及一些其它的系统信息。这个beacon帧是用在WiFi中的很多的控制帧之一,它大约100ms发送一次,RSS通常是使用这个beacon帧来测量的。beacon帧是未加密的,所以即使是一个封闭的网络(移动设备未能连接上)也能用来定位。beacon帧接近于周期性地被发送,但并不是完全周期性的,当检测到传输媒介阻塞的时候需要延迟发送,一旦检测到不阻塞的时候就发送,下一次发送还是会在之前预计的100ms时刻,即使离上一次发送还不足100ms。更进一步,如果AP工作在多个信道上,为了避免冲突,在测量RSS之前,移动设备必须花时间扫描各个信道。WiFi标准(IEEE 802.11)指定了2.4GHz频带的11个信道以及更多的5GHz频带的信道。尽管在一个地理区域中使用多个信道的情况并不罕见,但实际WiFi仅仅使用2.4GHz频带中三个不重叠的信道。关于WiFi和IEEE 802.11标准的更多细节可以参阅(Perahia and Stacey 2008)。

由测量值和指纹库估计位置

使用位置指纹进行定位通常有两个阶段:离线阶段和在线阶段。在离线阶段,为了采集各个位置上的指纹,构建一个数据库,需要在指定的区域进行繁琐的勘测,采集好的数据有时也称为训练集。在在线阶段,系统将估计待定位的移动设备的位置。接下来我们将对这两个阶段进行更详细的描述。需要注意的是,室内定位中所得到的位置坐标通常是指在当前环境中的一个局部坐标系中的坐标,而不是经纬度。

离线阶段

位置和指纹的对应关系的建立通常在离线阶段进行。最典型的场景如图2.2所示,地理区域被一个矩形网格所覆盖,这个场景中是4行8列的网格(共32个网格点),2个AP。这些AP本来是部署在这里用来通信的,也可以用来做定位。在每一个网格点上,通过一段时间的数据采样(5到15分钟,大约每秒采集一次)得到来自各个AP的平均RSS,采集的时候移动设备可能有不同的朝向和角度。这个例子中,一个网格点上的指纹是一个二维的向量ρ=[ρ1,ρ2]ρ=[ρ1,ρ2],其中ρiρi是来自第ii个AP的平均RSS。在后面会看到,我们也可以记录RSS样本的分布(或者其他的一些统计参数,比如标准差)作为指纹。简单起见,后文没有特别说明的情况下都认为指纹是RSS样本的均值。


图2 基于WiFi信号强度的位置指纹法,以及RSS空间中的欧氏距离

这些二维的指纹是在每个网格点所示的区域(如图2)采集到的,这些网格点坐标和对应的指纹组成一个数据库,这个过程有时称为标注阶段(calibration phase),这个指纹数据库有时也称为无线电地图(radio map)(译者注:后面都简称为指纹库),表1是这个指纹库的一个局部。图2右边的部分在二维向量空间(后文都统一称作信号空间)中展示了这些指纹。在更一般的场景下,假设有NN个AP,那么指纹ρρ是一个NN维的向量,这在信号空间中就难以画出来了。


表1

尽管RSS样本的坐标点是实际物理空间中的直角网格点,但是位置指纹在信号空间中不会这样有规律。我们之后会看到,呈直角网格的位置点转换到信号空间中后变成了一些没有规律的模式。有些信号向量即使在物理空间中离得很远,在信号空间中却有可能很近,这会增加错误的几率。因此,指纹采集的有些部分也许没有什么用,甚至有时会对定位效果不利。

在线阶段

在在线阶段,一个移动设备处于这个地理区域之中,但是不知道它的具体位置,它甚至不太可能正好处于网格点上。假设这个移动设备测量到了来自各个AP的RSS(在图2的例子中,仅仅能测量到两个AP的RSS)。这里我们假设只测量到一个样本,当来自各个AP的RSS都被测量到的时候,RSS向量的测量值被传输到网络中。设图2中的例子中RSS向量的为r=[r1,r2]r=[r1,r2]。要确定移动设备的位置,就是要找到在指纹库中找到和rr最匹配的指纹ρρ。一旦找到了最佳的匹配,那么移动设备的位置就被估计为这个最佳匹配的指纹所对应的位置。比如,如果r=[−65,−49]r=[−65,−49],那么最匹配的样本是表1中的第一项,移动设备被定位在坐标(0,0)(0,0)。在更一般的情况下,向量rr是NN维的。

以上的讨论对坐标、指纹、测量值、匹配向量rr和ρρ做了很多的简化。后文我们考虑一些更详细的问题。首先从匹配rr和ρρ的算法开始。

发布了5 篇原创文章 · 获赞 0 · 访问量 84

猜你喜欢

转载自blog.csdn.net/howell92/article/details/104917337