Java笔记:单链表

单链表

链表:
是一种物理存储结构上非连续存储结构,数据元素的逻辑顺序是通过链表中的引用链接次序实现的。
无头单向非循环链表
无头双向链表

  • 不支持随机访问
  • 任意位置插入删除时间复杂度为O(1)
// 借助链表中的引用次序进行存储
 //需要自己定义一个节点类进行存储

//节点类
class ListNode {
    public int data;
    public ListNode next;
    public ListNode(int data) {
        this.data = data;
        this.next = null;
    }
}
class MySingleList {
    public ListNode head;//标志头

    public MySingleList() {
        this.head = null;
    }

    //头插法
    public void addFirst(int data){
        ListNode node = new ListNode(data);
        if(this.head == null) {
            this.head = node;
        }else {
            node.next = this.head;
            this.head = node;
        }
    }

    //尾插法
    public void addLast(int data) {
        ListNode node = new ListNode(data);
        ListNode cur = this.head;
        //0、判断是否是第一次插入
        if(this.head == null) {
            this.head = node;
        }else {
            //1、找尾巴
            while (cur.next != null) {
                cur = cur.next;
            }
            //2、进行插入
            cur.next = node;
        }
    }

    /**
     * 找到index-1位置的节点  返回当前节点的引用
     * @param index
     * @return
     */
	 //找前驱
    private ListNode searchIndex(int index) {
        //prev-->index-1;
        ListNode prev = this.head;
        int count = 0;
        while (count < index-1) {
            prev = prev.next;
            count++;
        }
        return prev;
    }
    //插入到index位置
    //任意位置插入,第一个数据节点为0号下标
    public boolean addIndex(int index,int data){
        //下标不合法
        if(index < 0 || index > getLength()) {
            return false;
        }
        //头插法
        if(index == 0) {
            addFirst(data);
            return true;
        }
        ListNode prev = searchIndex(index);
        ListNode node = new ListNode(data);
        node.next = prev.next;
        prev.next = node;
        return false;
    }

    public int getLength() {
        int count = 0;
        ListNode cur = this.head;
        while (cur != null) {
            count++;
            cur = cur.next;
        }
        return count;
    }

    //打印单链表数据
    public void display(){
        if(this.head == null) {
            return;
        }
        ListNode cur = this.head;
        while (cur != null) {
            System.out.print(cur.data+" ");
            cur = cur.next;
        }
        System.out.println();
    }

    //查找是否包含关键字key是否在单链表当中
    public boolean contains1(int key){
        ListNode cur = this.head;
        while (cur != null) {
            if(cur.data == key) {
                return true;
            }
            cur = cur.next;
        }
        return false;
    }
    public ListNode contains2(int key){
        ListNode cur = this.head;
        while (cur != null) {
            if(cur.data == key) {
                return cur;
            }
            cur = cur.next;
        }
        return null;
    }
    //返回对应值节点的前驱
    private ListNode searchPrev(int key) {
        ListNode prev = this.head;
        while (prev.next != null) {
            if(prev.next.data == key) {
                return prev;
            }
            prev = prev.next;
        }
        return null;
    }
    //删除第一次出现关键字为key的节点
    public void remove(int key){
        //1、删除的节点如果是头结点
        if(this.head.data == key) {
            this.head = this.head.next;
            return;
        }
        //2、找到删除的节点的前驱  如果找不到  返回null
        ListNode prev = searchPrev(key);
        if(prev == null) {
            System.out.println("没有你要删除的节点");
            return;
        }
        ListNode del = prev.next;
        //3、进行删除
        prev.next = del.next;
    }

    //删除所有值为key的节点
    public void removeAllKey(int key){
        ListNode prev = this.head;
        ListNode cur = this.head.next;
        while (cur != null) {
            if(cur.data == key) {
                prev.next = cur.next;
                cur = cur.next;
            }else {
                prev = cur;
                cur = cur.next;
            }
        }
        if(this.head.data == key) {
            this.head = this.head.next;
        }
    }
    public void clear(){
        //this.head = null;
        while (this.head.next != null) {
            ListNode cur = this.head.next;
            this.head.next = cur.next;
        }
        this.head = null;
    }
    //反转单链表  时间复杂度为O(N),只遍历了一遍单链表   
    public ListNode reverseList() {
        ListNode prev = null;
        ListNode cur = this.head;
        ListNode newHead = null;
        while (cur != null) {
            ListNode curNext = cur.next;
            if(curNext == null) {
                newHead = cur;
            }
            cur.next = prev;
            prev = cur;
            cur = curNext;
        }
        return newHead;
    }
	
	//打印反转后的单链表,要重写display
    public void display2(ListNode newHead){
        if(newHead == null) {
            return;
        }
        ListNode cur = newHead;
        while (cur != null) {
            System.out.print(cur.data+" ");
            cur = cur.next;
        }
        System.out.println();
    }
	
	//返回中间节点
    public ListNode middleNode() {
        /*
		//此方法,获取长度遍历了一遍链表,共遍历了2 次链表,能否遍历一次
		int len = getLength()/2;
        ListNode cur = this.head;
        for (int i = 0; i < len; i++) {
            cur = cur.next;
        }
        return cur;*/
        ListNode low = this.head;
        ListNode fast = this.head;
        while (fast != null && fast.next != null){   //
            fast = fast.next.next;  //当fast遍历完时,low正好位于中间位置,因low比fast慢一半
            low = low.next;
        }
        return low;
    }
    
	//返回倒数第K个节点,
    public ListNode findKthToTail1(int k) {
        if(k <= 0 ||k > getLength()) {   //不想用getLength,会增加时间复杂度
            return null;
        }
        ListNode fast = this.head;
        ListNode slow = this.head;
		//先让fast走k-1步,然后再和slow一起走,最后当fast为空时,slow即为所求节点
        while (k-1 > 0) {
            fast = fast.next;
            k--;
        }
        while (fast.next != null) {
            fast = fast.next;
            slow = slow.next;
        }
        return slow;
    }
	
	//不用getlength来求倒数第K个节点,要求只遍历一次链表
    public ListNode findKthToTail(int k) {
		//OJ上面的
		// if(k <= 0 || head ==  null) {
        //    return null;
        //}
        if(k <= 0) {
            return null;
        }
        ListNode fast = this.head;
        ListNode slow = this.head;
        while (k-1 > 0) {
            if(fast.next != null) {  //加约束达成遍历一遍链表的目的
                fast = fast.next;
                k--;
            }else {
                System.out.println("没有这个节点");
                return null;
            }

        }
        while (fast.next != null) {
            fast = fast.next;
            slow = slow.next;
        }
        return slow;
    }
	
	
	
	
	
	
    //以x为基准分割链表
    public ListNode partition(int x){
        ListNode bs = null;
        ListNode be = null;
        ListNode as = null;
        ListNode ae = null;
        ListNode cur = this.head;
        while (cur != null) {
            if(cur.data < x) {
                //是不是第一次插入
                if(bs == null) {
                    bs = cur;
                    be = bs;
                }else {
                    be.next = cur;
                    be = be.next;   //bs.be 区间的端点 
                }
            }else {
                //是不是第一次插入
                if(as == null) {
                    as = cur;
                    ae = cur;
                }else {
                    ae.next = cur;
                    ae = ae.next;
                }
            }
            cur = cur.next;
        }
        //第一个区间没有数据
        if(bs == null) {
            return as;
        }
        be.next = as;//若as为空或as正常有值
        if(as != null) {
            ae.next = null;//as不为空需将结尾置为null,没有此句会出现死循环
        }
        return bs;  //返回头节点
    }


	
	
	
	
	//7:删除重复节点!!!!!!加入了一个辅助节点
    public ListNode deleteDuplication(){
        if(this.head == null) {
            return null;
        }
        ListNode cur = this.head;
        ListNode newHead = new ListNode(-1); //虚拟节点
        ListNode tmp = newHead;
        while (cur != null) {
            //重复的节点
            if(cur.next != null
             && cur.data == cur.next.data) {
                //每一次都需要判断cur.next
                while (cur.next != null
                 &&cur.data == cur.next.data) {
                    cur = cur.next;
                }
                cur = cur.next;
            }else {
                tmp.next = cur;
                tmp = tmp.next;
                cur = cur.next;
            }
        }
        //如果最后的节点也是重复的
        // 需要将tmp.next = null;
        tmp.next = null;
        return newHead.next;
    }
	
	
	
	//8. 判断一个链表是否为回文结构
	
    public boolean chkPalindrome() {
		//两种特殊情况
		//没有节点
        if(this.head == null) {
            return false;
        }
		//只有一个节点
        if(this.head.next == null) {
            return true;
        }
        //1、找到单链表的中间节点
        ListNode fast = this.head;
        ListNode slow = this.head;
        while (fast != null && fast.next != null) {
            fast = fast.next.next;
            slow = slow.next;
        }
		//循环结束后,slow即为中间节点
		
        //2、反转单链表(反转中间节点的后半部分)
        ListNode cur = slow.next;
        while (cur != null) {
            ListNode curNext = cur.next;
            cur.next = slow;
            slow = cur;
            cur = curNext;
        }
        //3、fast/slow往前    head往后走 走到中间时会出现重合
        while (slow != this.head) {
			//
            if(slow.data != this.head.data) {
                return false;
            }
			//增加判断偶数的情况  
            if(this.head.next == slow) {
                return true;
            }
            slow = slow.next;
            this.head = this.head.next;
        }
        return true;
    }

	
	//创造一个环
    public void creteLoop() {
        ListNode cur = this.head;
        while (cur.next != null) {
            cur = cur.next;
        }
        cur.next = this.head.next.next;
    }
	
	//10 判断一个链表是否有环
    public boolean hasCycle(){
        ListNode fast = this.head;
        ListNode slow = this.head;
        while (fast != null && fast.next!= null) {
            fast = fast.next.next;
            slow = slow.next;
            if(slow == fast) {
                break;
            }
        }
		//如果是因遍历结束退出,则没有环结构
        if(fast == null || fast.next == null) {
            return false;
        }
        return true;
    }
	
	//返回入环节点
    public ListNode detectCycle() {
        ListNode fast = this.head;
        ListNode slow = this.head;
        while (fast != null && fast.next!= null) {
            fast = fast.next.next;
            slow = slow.next;
            if(slow == fast) {
                break;
            }
        }
        if(fast == null || fast.next == null) {
            return null;//无环
        }
		//有环
        slow = this.head;
        while (slow != fast) {
            slow = slow.next;
            fast = fast.next;
        }
        return slow;
    }
}

测试:

package SingleList;
/**
 * Created with IntelliJ IDEA.
 * Description:
 * User: GAOBO
 * Date: 2019-11-03
 * Time: 11:35
 */
public class TestSingleList {
	 // 将两个有序单链表 合并称为一个新的有序链表 并返回
	 public static ListNode  mergeTwoLists(ListNode headA, ListNode headB){
        ListNode newHead = new ListNode(-1);  //����ڵ�
        ListNode tmp = newHead;
        while (headA != null && headB != null) {
            if(headA.data < headB.data) {
                tmp.next = headA;
                headA = headA.next;
                tmp = tmp.next;
            }else {
                tmp.next = headB;
                headB = headB.next;
                tmp = tmp.next;
            }
        }
        if (headA != null) { //headBΪ�յ����
            tmp.next = headA;
        }
        if(headB != null) { // headAΪ�յ����
            tmp.next = headB;
        }
        return newHead.next;
    }

    //判断两个单链表是否有交点
	 public static ListNode getIntersectionNode
            (ListNode headA, ListNode headB) {
        if(headA == null || headB == null) {
            return null;
        }

        ListNode pL = headA;//永远指向长的单链表
        ListNode pS = headB;//永远指向短的单链表
        int lenA = 0;
        int lenB = 0;
         //求的lenA  lenB
        while (pL != null) {
            lenA++;
            pL = pL.next;
        }
        while (pS != null) {
            lenB++;
            pS = pS.next;
        }

         //复位
        pL = headA;
        pS = headB;


         //差值-》最长的单链表先走len步
        int len = lenA-lenB;
        if(len < 0) {
            pL = headB;
            pS = headA;
            len = lenB-lenA;
        }
         //让pL先走len步
        while (len > 0) {
            pL = pL.next;
            len--;
        }
         //开始一起走  (pL  != pS ) {一人一步走}
        while (pL != pS) {
            pS = pS.next;
            pL = pL.next;
        }
        if(pL == null) {
            return null;
        }
        return pL;
    }

    //创建一个有交点的,单链表
    public static void createCut
            (ListNode headA, ListNode headB) {
        headA.next = headB.next.next;
    }


    //复制带随机指针的链表   在OJ上做,OJ提供的ListNode有三个域
	/**
    public ListNode copyRandomList(Node head) {
      if(head == null){
          return null;
      }

     //1、老新进行进行交替链接
      ListNode cur = head;
      while(cur != null) {
          ListNode node = new ListNode(cur.val,cur.next,null);
          Node tmp = cur.next;
          cur.next = node;
          cur = tmp;
      }
      // 2、修改random
      cur = head;
      while(cur != null) {
          if(cur.random != null) {
              cur.next.random = cur.random.next;
              cur = cur.next.next;
          }else{
            cur = cur.next.next;
          }
      }
     //3、将老新节点 打开
      cur = head;
      ListNode newHead = cur.next;
      while(cur.next != null) {
          ListNode tmp = cur.next;
          cur.next = tmp.next;
          cur = tmp;
      }
      return newHead;
    }
}
*/
	
    public static void main(String[] args) {
        MySingleList mySingleList = new MySingleList();
        mySingleList.addIndex(0,199);
        mySingleList.addLast(1);
        mySingleList.addLast(2);
        mySingleList.addLast(3);
        mySingleList.addLast(4);
        mySingleList.addLast(5);
        mySingleList.display();

        //逆置
		System.out.println("逆置");
		ListNode newhead = mySingleList.reverseList();
		mySingleList.display2(newhead);
        //返回中间节点
		ListNode node = mySingleList.middleNode();
		System.out.println(node.data);

        //返回倒数第K个节点
		ListNode node1 = mySingleList.findKthToTail(1);
		System.out.println(node1.data);

        //以x为基准划分区间
		ListNode head = mySingleList.partition(3);
        //划分区间后,有一个新的头,需要调用display2
		mySingleList.display2(head);

        //删除重复节点
		ListNode newhead1 = mySingleList.deleteDuplication();
		mySingleList.display2(newhead1);

        //判断是否为回文结构
		boolean flg = mySingleList.chkPalindrome();
		System.out.println(flg);

        //创造一个环
		mySingleList.creteLoop();
        //判断是否为环结构
		boolean flg1 = mySingleList.hasCycle();
		System.out.println(flg1);

        //连接两个链表
		MySingleList mySingleList1 = new MySingleList();
		mySingleList1.addLast(3);
		mySingleList1.addLast(3);
		mySingleList1.addLast(4);
		mySingleList1.addLast(5);
		mySingleList1.addLast(6);
		mySingleList1.addLast(7);
		mySingleList1.display();
		
		MySingleList mySingleList2 = new MySingleList();
		mySingleList2.addLast(1);
		mySingleList2.addLast(3);
		mySingleList2.addLast(2);
		mySingleList2.addLast(3);
		mySingleList2.addLast(6);
		mySingleList2.addLast(8);
		mySingleList2.display();
		ListNode newhead2 = mergeTwoLists(mySingleList1.head,mySingleList2.head);
		mySingleList.display2(newhead2);

        //判断连个链表是否相交
        //创建一个有交点的单链表
		 createCut(mySingleList1.head,
                mySingleList2.head);
		
		 ListNode node2 = getIntersectionNode(mySingleList1.head,
                mySingleList2.head);
        System.out.println(node2.data);
		
    }
}

发布了54 篇原创文章 · 获赞 6 · 访问量 4814

猜你喜欢

转载自blog.csdn.net/glpghz/article/details/104130157