Linux syscall 系统调用原理

syscall概念

内核提供用户空间程序与内核空间进行交互的一套标准接口,这些接口让用户态程序能受限访问硬件设备,比如申请系统资源,操作设备读写,创建新进程等。用户空间发生请求,内核空间负责执行,这些接口便是用户空间和内核空间共同识别的桥梁,这里提到两个字“受限”,是由于为了保证内核稳定性,而不能让用户空间程序随意更改系统,必须是内核对外开放的且满足权限的程序才能调用相应接口。

在用户空间和内核空间之间,有一个叫做Syscall(系统调用, system call)的中间层,是连接用户态和内核态的桥梁。这样即提高了内核的安全型,也便于移植,只需实现同一套接口即可。Linux系统,用户空间通过向内核空间发出Syscall,产生软中断,从而让程序陷入内核态,执行相应的操作。对于每个系统调用都会有一个对应的系统调用号,比很多操作系统要少很多。

安全性与稳定性:内核驻留在受保护的地址空间,用户空间程序无法直接执行内核代码,也无法访问内核数据,通过系统调用让程序陷入内核态,从而可以执行相应的操作。
性能:Linux上下文切换时间很短,以及系统调用处理过程非常精简,内核优化得好,所以性能上往往比很多其他操作系统执行要好。

举个例子:
通过系统调用获取线程id。

pid_t tid = syscall(SYS_gettid);

Linux中,每个进程有一个pid,类型pid_t,由getpid()取得。Linux下的POSIX线程也有一个id,类型pthread_t,由pthread_self()取得,该id由线程库维护,其id空间是各个进程独立的(即不同进程中的线程可能有相同的id)。Linux中的POSIX线程库实现的线程其实也是一个进程(LWP),只是该进程与主进程(启动线程的进程)共享一些资源而已,比如代码段,数据段等。
有时候我们可能需要知道线程的真实pid。比如进程P1要向另外一个进程P2中的某个线程发送信号时,既不能使用P2的pid,更不能使用线程的pthread id,而只能使用该线程的真实pid,称为tid。有一个函数gettid()可以得到tid,但glibc并没有实现该函数,只能通过Linux的系统调用syscall来获取。

syscall流程

syscall是通过中断方式实现的,ARM平台上通过swi中断来实现系统调用,实现从用户态切换到内核态,发送软中断swi时,从中断向量表中查看跳转代码。
一般情况下,用户进程是不能访问内核的。它既不能访问内核所在的内存空间,也不能调用内核中的函数。系统调用是一个例外。其原理是(1)进程先用适当的值填充寄存器,(2)然后调用一个特殊的指令,(3)这个指令会让用户程序跳转到一个事先定义好的内核中的一个位置。(4)进程可以跳转到的固定的内核位置。这个过程检查系统调用号,这个号码告诉内核进程请求哪种服务。然后,它查看系统调用表(sys_call_table)找到所调用的内核函数入口地址。接着,就调用函数,等返回后,做一些系统检查,最后返回到进程。

发布了78 篇原创文章 · 获赞 3 · 访问量 1万+

猜你喜欢

转载自blog.csdn.net/LU_ZHAO/article/details/104334553
今日推荐