Golang 学习笔记-----Goroutine

 

引入

关于并发与并行

关于协程 

关于goroutine

使用

单个

多个

池 

同步 

介绍 

互斥锁

读写锁

原子操作 

执行 

            可增长的栈

             goroutine调度

              GOMAXPROCS

回收

sync.WaitGroup 

sync.Once

sync.Map 

 

泄露 

调度 

           调度模型简介 

            调度实现

关闭 

           第一种:使用for-range退出 

           第二种:使用,ok退出

            最佳实践回顾


 

引入

关于并发与并行

并发:同一时间段内执行多个任务(你在用微信和两个女朋友聊天)。

并行:同一时刻执行多个任务(你和你朋友都在用微信和女朋友聊天)。

关于协程 

Go语言的并发通过goroutine实现。
goroutine是一种协程

协程,是一种比线程更加轻量级的存在 

正如一个进程可以拥有多个线程一样,一个线程也可以拥有多个协程。 

这样带来的好处就是性能得到了很大的提升,不会像线程切换那样消耗资源


协程不是被操作系统内核所管理,而完全是由程序所控制(也就是在用户态执行)。

Go语言还提供channel在多个goroutine间进行通信。

关于goroutine

在java/c++中我们要实现并发编程的时候,我们通常需要自己维护一个线程池,并且需要自己去包装一个又一个的任务,同时需要自己去调度线程执行任务并维护上下文切换,这一切通常会耗费程序员大量的心智。那么能不能有一种机制,程序员只需要定义很多个任务,让系统去帮助我们把这些任务分配到CPU上实现并发执行呢?

Go语言中的goroutine就是这样一种机制,goroutine的概念类似于线程,但 goroutine是由Go的运行时(runtime)调度和管理的。Go程序会智能地将 goroutine 中的任务合理地分配给每个CPU。Go语言之所以被称为现代化的编程语言,就是因为它在语言层面已经内置了调度和上下文切换的机制。

在Go语言编程中你不需要去自己写进程、线程、协程,你的技能包里只有一个技能–goroutine,当你需要让某个任务并发执行的时候,你只需要把这个任务包装成一个函数,开启一个goroutine去执行这个函数就可以了,就是这么简单粗暴。

Go语言中使用goroutine非常简单,只需要在调用函数的时候在前面加上go关键字,就可以为一个函数创建一个goroutine

一个goroutine必定对应一个函数,可以创建多个goroutine去执行相同的函数。

使用

单个

启动单个goroutine

启动goroutine的方式非常简单,只需要在调用的函数(普通函数和匿名函数)前面加上一个go关键字。

举个例子如下:

func hello() {
	fmt.Println("Hello Goroutine!")
}
func main() {
	hello()
	fmt.Println("main goroutine done!")
}

这个示例中hello函数和下面的语句是串行的,执行的结果是打印完Hello Goroutine!后打印main goroutine done!

接下来我们在调用hello函数前面加上关键字go,也就是启动一个goroutine去执行hello这个函数。

func main() {
	go hello() // 启动另外一个goroutine去执行hello函数
	fmt.Println("main goroutine done!")
}

这一次的执行结果只打印了main goroutine done!,并没有打印Hello Goroutine!。为什么呢?

在程序启动时,Go程序就会为main()函数创建一个默认的goroutine

当main()函数返回的时候该goroutine就结束了,所有在main()函数中启动的goroutine会一同结束,main函数所在的goroutine就像是权利的游戏中的夜王,其他的goroutine都是异鬼,夜王一死它转化的那些异鬼也就全部GG了。

所以我们要想办法让main函数等一等hello函数,最简单粗暴的方式就是time.Sleep了。

func main() {
	go hello() // 启动另外一个goroutine去执行hello函数
	fmt.Println("main goroutine done!")
	time.Sleep(time.Second)
}

执行上面的代码你会发现,这一次先打印main goroutine done!,然后紧接着打印Hello Goroutine!

首先为什么会先打印main goroutine done!是因为我们在创建新的goroutine的时候需要花费一些时间,而此时main函数所在的goroutine是继续执行的。

多个

在Go语言中实现并发就是这样简单,我们还可以启动多个goroutine。让我们再来一个例子: (这里使用了sync.WaitGroup来实现goroutine的同步)

var wg sync.WaitGroup

func hello(i int) {
	defer wg.Done() // goroutine结束就登记-1
	fmt.Println("Hello Goroutine!", i)
}
func main() {

	for i := 0; i < 10; i++ {
		wg.Add(1) // 启动一个goroutine就登记+1
		go hello(i)
	}
	wg.Wait() // 等待所有登记的goroutine都结束
}

多次执行上面的代码,会发现每次打印的数字的顺序都不一致。这是因为10个goroutine是并发执行的,而goroutine的调度是随机的。

池 

在工作中我们通常会使用可以指定启动的goroutine数量–worker pool模式,

控制goroutine的数量,防止goroutine泄漏和暴涨。

一个简易的work pool示例代码如下:

func worker(id int, jobs <-chan int, results chan<- int) {
	for j := range jobs {
		fmt.Printf("worker:%d start job:%d\n", id, j)
		time.Sleep(time.Second)
		fmt.Printf("worker:%d end job:%d\n", id, j)
		results <- j * 2
	}
}


func main() {
	jobs := make(chan int, 100)
	results := make(chan int, 100)
	// 开启3个goroutine
	for w := 1; w <= 3; w++ {
		go worker(w, jobs, results)
	}
	// 5个任务
	for j := 1; j <= 5; j++ {
		jobs <- j
	}
	close(jobs)
	// 输出结果
	for a := 1; a <= 5; a++ {
		<-results
	}
}

同步 

介绍 

并发安全和锁

有时候在Go代码中可能会存在多个goroutine同时操作一个资源(临界区),这种情况会发生竞态问题(数据竞态)。类比现实生活中的例子有十字路口被各个方向的的汽车竞争;还有火车上的卫生间被车厢里的人竞争。

举个例子:

var x int64
var wg sync.WaitGroup

func add() {
	for i := 0; i < 5000; i++ {
		x = x + 1
	}
	wg.Done()
}
func main() {
	wg.Add(2)
	go add()
	go add()
	wg.Wait()
	fmt.Println(x)
}

上面的代码中我们开启了两个goroutine去累加变量x的值,这两个goroutine在访问和修改x变量的时候就会存在数据竞争,导致最后的结果与期待的不符。

互斥锁

互斥锁是一种常用的控制共享资源访问的方法,它能够保证同时只有一个goroutine可以访问共享资源。Go语言中使用sync包的Mutex类型来实现互斥锁。 使用互斥锁来修复上面代码的问题:

var x int64
var wg sync.WaitGroup
var lock sync.Mutex

func add() {
	for i := 0; i < 5000; i++ {
		lock.Lock() // 加锁
		x = x + 1
		lock.Unlock() // 解锁
	}
	wg.Done()
}
func main() {
	wg.Add(2)
	go add()
	go add()
	wg.Wait()
	fmt.Println(x)
}

使用互斥锁能够保证同一时间有且只有一个goroutine进入临界区,其他的goroutine则在等待锁;当互斥锁释放后,等待的goroutine才可以获取锁进入临界区,多个goroutine同时等待一个锁时,唤醒的策略是随机的。

读写锁

互斥锁是完全互斥的,但是有很多实际的场景下是读多写少的,当我们并发的去读取一个资源不涉及资源修改的时候是没有必要加锁的,这种场景下使用读写锁是更好的一种选择。读写锁在Go语言中使用sync包中的RWMutex类型。

读写锁分为两种:读锁和写锁。当一个goroutine获取读锁之后,其他的goroutine如果是获取读锁会继续获得锁,如果是获取写锁就会等待;当一个goroutine获取写锁之后,其他的goroutine无论是获取读锁还是写锁都会等待。

读写锁示例:

var (
	x      int64
	wg     sync.WaitGroup
	lock   sync.Mutex
	rwlock sync.RWMutex
)

func write() {
	// lock.Lock()   // 加互斥锁
	rwlock.Lock() // 加写锁
	x = x + 1
	time.Sleep(10 * time.Millisecond) // 假设读操作耗时10毫秒
	rwlock.Unlock()                   // 解写锁
	// lock.Unlock()                     // 解互斥锁
	wg.Done()
}

func read() {
	// lock.Lock()                  // 加互斥锁
	rwlock.RLock()               // 加读锁
	time.Sleep(time.Millisecond) // 假设读操作耗时1毫秒
	rwlock.RUnlock()             // 解读锁
	// lock.Unlock()                // 解互斥锁
	wg.Done()
}

func main() {
	start := time.Now()
	for i := 0; i < 10; i++ {
		wg.Add(1)
		go write()
	}

	for i := 0; i < 1000; i++ {
		wg.Add(1)
		go read()
	}

	wg.Wait()
	end := time.Now()
	fmt.Println(end.Sub(start))
}

需要注意的是读写锁非常适合读多写少的场景,如果读和写的操作差别不大,读写锁的优势就发挥不出来。

原子操作 

代码中的加锁操作因为涉及内核态的上下文切换会比较耗时、代价比较高。针对基本数据类型我们还可以使用原子操作来保证并发安全,因为原子操作是Go语言提供的方法它在用户态就可以完成,因此性能比加锁操作更好。Go语言中原子操作由内置的标准库sync/atomic提供。

atomic包

方法 解释
func LoadInt32(addr *int32) (val int32)
func LoadInt64(addr *int64) (val int64)
func LoadUint32(addr *uint32) (val uint32)
func LoadUint64(addr *uint64) (val uint64)
func LoadUintptr(addr *uintptr) (val uintptr)
func LoadPointer(addr *unsafe.Pointer) (val unsafe.Pointer)
读取操作
func StoreInt32(addr *int32, val int32)
func StoreInt64(addr *int64, val int64)
func StoreUint32(addr *uint32, val uint32)
func StoreUint64(addr *uint64, val uint64)
func StoreUintptr(addr *uintptr, val uintptr)
func StorePointer(addr *unsafe.Pointer, val unsafe.Pointer)
写入操作
func AddInt32(addr *int32, delta int32) (new int32)
func AddInt64(addr *int64, delta int64) (new int64)
func AddUint32(addr *uint32, delta uint32) (new uint32)
func AddUint64(addr *uint64, delta uint64) (new uint64)
func AddUintptr(addr *uintptr, delta uintptr) (new uintptr)
修改操作
func SwapInt32(addr *int32, new int32) (old int32)
func SwapInt64(addr *int64, new int64) (old int64)
func SwapUint32(addr *uint32, new uint32) (old uint32)
func SwapUint64(addr *uint64, new uint64) (old uint64)
func SwapUintptr(addr *uintptr, new uintptr) (old uintptr)
func SwapPointer(addr *unsafe.Pointer, new unsafe.Pointer) (old unsafe.Pointer)
交换操作
func CompareAndSwapInt32(addr *int32, old, new int32) (swapped bool)
func CompareAndSwapInt64(addr *int64, old, new int64) (swapped bool)
func CompareAndSwapUint32(addr *uint32, old, new uint32) (swapped bool)
func CompareAndSwapUint64(addr *uint64, old, new uint64) (swapped bool)
func CompareAndSwapUintptr(addr *uintptr, old, new uintptr) (swapped bool)
func CompareAndSwapPointer(addr *unsafe.Pointer, old, new unsafe.Pointer) (swapped bool)
比较并交换操作

示例

我们填写一个示例来比较下互斥锁和原子操作的性能。

package main

import (
	"fmt"
	"sync"
	"sync/atomic"
	"time"
)

type Counter interface {
	Inc()
	Load() int64
}

// 普通版
type CommonCounter struct {
	counter int64
}

func (c CommonCounter) Inc() {
	c.counter++
}

func (c CommonCounter) Load() int64 {
	return c.counter
}

// 互斥锁版
type MutexCounter struct {
	counter int64
	lock    sync.Mutex
}

func (m *MutexCounter) Inc() {
	m.lock.Lock()
	defer m.lock.Unlock()
	m.counter++
}

func (m *MutexCounter) Load() int64 {
	m.lock.Lock()
	defer m.lock.Unlock()
	return m.counter
}

// 原子操作版
type AtomicCounter struct {
	counter int64
}

func (a *AtomicCounter) Inc() {
	atomic.AddInt64(&a.counter, 1)
}

func (a *AtomicCounter) Load() int64 {
	return atomic.LoadInt64(&a.counter)
}

func test(c Counter) {
	var wg sync.WaitGroup
	start := time.Now()
	for i := 0; i < 1000; i++ {
		wg.Add(1)
		go func() {
			c.Inc()
			wg.Done()
		}()
	}
	wg.Wait()
	end := time.Now()
	fmt.Println(c.Load(), end.Sub(start))
}

func main() {
	c1 := CommonCounter{} // 非并发安全
	test(c1)
	c2 := MutexCounter{} // 使用互斥锁实现并发安全
	test(&c2)
	c3 := AtomicCounter{} // 并发安全且比互斥锁效率更高
	test(&c3)
}

atomic包提供了底层的原子级内存操作,对于同步算法的实现很有用。这些函数必须谨慎地保证正确使用。除了某些特殊的底层应用,使用通道或者sync包的函数/类型实现同步更好。

执行 

可增长的栈

OS线程(操作系统线程)一般都有固定的栈内存(通常为2MB),一个goroutine的栈在其生命周期开始时只有很小的栈(典型情况下2KB),goroutine的栈不是固定的,他可以按需增大和缩小,goroutine的栈大小限制可以达到1GB,虽然极少会用到这个大。所以在Go语言中一次创建十万左右的goroutine也是可以的。

goroutine调度

GPM是Go语言运行时(runtime)层面的实现,是go语言自己实现的一套调度系统。区别于操作系统调度OS线程。

  • G很好理解,就是个goroutine的,里面除了存放本goroutine信息外 还有与所在P的绑定等信息。
  • P管理着一组goroutine队列,P里面会存储当前goroutine运行的上下文环境(函数指针,堆栈地址及地址边界),P会对自己管理的goroutine队列做一些调度(比如把占用CPU时间较长的goroutine暂停、运行后续的goroutine等等)当自己的队列消费完了就去全局队列里取,如果全局队列里也消费完了会去其他P的队列里抢任务。
  • M(machine)是Go运行时(runtime)对操作系统内核线程的虚拟, M与内核线程一般是一一映射的关系, 一个groutine最终是要放到M上执行的;

P与M一般也是一一对应的。他们关系是: P管理着一组G挂载在M上运行。当一个G长久阻塞在一个M上时,runtime会新建一个M,阻塞G所在的P会把其他的G 挂载在新建的M上。当旧的G阻塞完成或者认为其已经死掉时 回收旧的M。

P的个数是通过runtime.GOMAXPROCS设定(最大256),Go1.5版本之后默认为物理线程数。 在并发量大的时候会增加一些P和M,但不会太多,切换太频繁的话得不偿失。

单从线程调度讲,Go语言相比起其他语言的优势在于OS线程是由OS内核来调度的,goroutine则是由Go运行时(runtime)自己的调度器调度的,这个调度器使用一个称为m:n调度的技术(复用/调度m个goroutine到n个OS线程)。 其一大特点是goroutine的调度是在用户态下完成的, 不涉及内核态与用户态之间的频繁切换,包括内存的分配与释放,都是在用户态维护着一块大的内存池, 不直接调用系统的malloc函数(除非内存池需要改变),成本比调度OS线程低很多。 另一方面充分利用了多核的硬件资源,近似的把若干goroutine均分在物理线程上, 再加上本身goroutine的超轻量,以上种种保证了go调度方面的性能。

点我了解更多

GOMAXPROCS

Go运行时的调度器使用GOMAXPROCS参数来确定需要使用多少个OS线程来同时执行Go代码。默认值是机器上的CPU核心数。例如在一个8核心的机器上,调度器会把Go代码同时调度到8个OS线程上(GOMAXPROCS是m:n调度中的n)。

Go语言中可以通过runtime.GOMAXPROCS()函数设置当前程序并发时占用的CPU逻辑核心数。

Go1.5版本之前,默认使用的是单核心执行。Go1.5版本之后,默认使用全部的CPU逻辑核心数。

我们可以通过将任务分配到不同的CPU逻辑核心上实现并行的效果,这里举个例子:

func a() {
	for i := 1; i < 10; i++ {
		fmt.Println("A:", i)
	}
}

func b() {
	for i := 1; i < 10; i++ {
		fmt.Println("B:", i)
	}
}

func main() {
	runtime.GOMAXPROCS(1)
	go a()
	go b()
	time.Sleep(time.Second)
}

两个任务只有一个逻辑核心,此时是做完一个任务再做另一个任务。 将逻辑核心数设为2,此时两个任务并行执行,代码如下。

func a() {
	for i := 1; i < 10; i++ {
		fmt.Println("A:", i)
	}
}

func b() {
	for i := 1; i < 10; i++ {
		fmt.Println("B:", i)
	}
}

func main() {
	runtime.GOMAXPROCS(2)
	go a()
	go b()
	time.Sleep(time.Second)
}

Go语言中的操作系统线程和goroutine的关系:

  1. 一个操作系统线程对应用户态多个goroutine。
  2. go程序可以同时使用多个操作系统线程。
  3. goroutine和OS线程是多对多的关系,即m:n。

回收

 

sync.WaitGroup 

在代码中生硬的使用time.Sleep肯定是不合适的,Go语言中可以使用sync.WaitGroup来实现并发任务的同步。 sync.WaitGroup有以下几个方法:

方法名 功能
(wg * WaitGroup) Add(delta int) 计数器+delta
(wg *WaitGroup) Done() 计数器-1
(wg *WaitGroup) Wait() 阻塞直到计数器变为0

sync.WaitGroup内部维护着一个计数器,计数器的值可以增加和减少。例如当我们启动了N 个并发任务时,就将计数器值增加N。每个任务完成时通过调用Done()方法将计数器减1。通过调用Wait()来等待并发任务执行完,当计数器值为0时,表示所有并发任务已经完成。

我们利用sync.WaitGroup将上面的代码优化一下:

var wg sync.WaitGroup

func hello() {
	defer wg.Done()
	fmt.Println("Hello Goroutine!")
}
func main() {
	wg.Add(1)
	go hello() // 启动另外一个goroutine去执行hello函数
	fmt.Println("main goroutine done!")
	wg.Wait()
}

需要注意sync.WaitGroup是一个结构体,传递的时候要传递指针。

 

sync.Once 

说在前面的话:这是一个进阶知识点。

在编程的很多场景下我们需要确保某些操作在高并发的场景下只执行一次,例如只加载一次配置文件、只关闭一次通道等。

Go语言中的sync包中提供了一个针对只执行一次场景的解决方案–sync.Once

sync.Once只有一个Do方法,其签名如下:

func (o *Once) Do(f func()) {}

备注:如果要执行的函数f需要传递参数就需要搭配闭包来使用。

加载配置文件示例

延迟一个开销很大的初始化操作到真正用到它的时候再执行是一个很好的实践。因为预先初始化一个变量(比如在init函数中完成初始化)会增加程序的启动耗时,而且有可能实际执行过程中这个变量没有用上,那么这个初始化操作就不是必须要做的。我们来看一个例子:

var icons map[string]image.Image

func loadIcons() {
	icons = map[string]image.Image{
		"left":  loadIcon("left.png"),
		"up":    loadIcon("up.png"),
		"right": loadIcon("right.png"),
		"down":  loadIcon("down.png"),
	}
}

// Icon 被多个goroutine调用时不是并发安全的
func Icon(name string) image.Image {
	if icons == nil {
		loadIcons()
	}
	return icons[name]
}

多个goroutine并发调用Icon函数时不是并发安全的,现代的编译器和CPU可能会在保证每个goroutine都满足串行一致的基础上自由地重排访问内存的顺序。loadIcons函数可能会被重排为以下结果:

func loadIcons() {
	icons = make(map[string]image.Image)
	icons["left"] = loadIcon("left.png")
	icons["up"] = loadIcon("up.png")
	icons["right"] = loadIcon("right.png")
	icons["down"] = loadIcon("down.png")
}

在这种情况下就会出现即使判断了icons不是nil也不意味着变量初始化完成了。考虑到这种情况,我们能想到的办法就是添加互斥锁,保证初始化icons的时候不会被其他的goroutine操作,但是这样做又会引发性能问题。

使用sync.Once改造的示例代码如下:

var icons map[string]image.Image

var loadIconsOnce sync.Once

func loadIcons() {
	icons = map[string]image.Image{
		"left":  loadIcon("left.png"),
		"up":    loadIcon("up.png"),
		"right": loadIcon("right.png"),
		"down":  loadIcon("down.png"),
	}
}

// Icon 是并发安全的
func Icon(name string) image.Image {
	loadIconsOnce.Do(loadIcons)
	return icons[name]
}

并发安全的单例模式

下面是借助sync.Once实现的并发安全的单例模式:

package singleton

import (
    "sync"
)

type singleton struct {}

var instance *singleton
var once sync.Once

func GetInstance() *singleton {
    once.Do(func() {
        instance = &singleton{}
    })
    return instance
}

sync.Once其实内部包含一个互斥锁和一个布尔值,互斥锁保证布尔值和数据的安全,而布尔值用来记录初始化是否完成。这样设计就能保证初始化操作的时候是并发安全的并且初始化操作也不会被执行多次。

 

sync.Map 

Go语言中内置的map不是并发安全的。请看下面的示例:

var m = make(map[string]int)

func get(key string) int {
	return m[key]
}

func set(key string, value int) {
	m[key] = value
}

func main() {
	wg := sync.WaitGroup{}
	for i := 0; i < 20; i++ {
		wg.Add(1)
		go func(n int) {
			key := strconv.Itoa(n)
			set(key, n)
			fmt.Printf("k=:%v,v:=%v\n", key, get(key))
			wg.Done()
		}(i)
	}
	wg.Wait()
}

上面的代码开启少量几个goroutine的时候可能没什么问题,当并发多了之后执行上面的代码就会报fatal error: concurrent map writes错误。

像这种场景下就需要为map加锁来保证并发的安全性了,Go语言的sync包中提供了一个开箱即用的并发安全版map–sync.Map。开箱即用表示不用像内置的map一样使用make函数初始化就能直接使用。同时sync.Map内置了诸如StoreLoadLoadOrStoreDeleteRange等操作方法。

var m = sync.Map{}

func main() {
	wg := sync.WaitGroup{}
	for i := 0; i < 20; i++ {
		wg.Add(1)
		go func(n int) {
			key := strconv.Itoa(n)
			m.Store(key, n)
			value, _ := m.Load(key)
			fmt.Printf("k=:%v,v:=%v\n", key, value)
			wg.Done()
		}(i)
	}
	wg.Wait()
}

 

泄露 

go是带内存自动回收的特性,因此内存一般不会泄漏。但是Goroutine确存在泄漏的情况,同时泄漏的Goroutine引用的内存同样无法被回收。

下面的程序中后台Goroutine向管道输入自然数序列,main函数中输出序列。但是当break跳出for循环的时候,后台Goroutine就处于无法被回收的状态了。

func main() {

    ch := func() <-chan int {

        ch := make(chan int)

        go func() {

            for i := 0; ; i++ {

                ch <- i

            }

        } ()

        return ch

    }()



    for v := range ch {

        fmt.Println(v)

        if v == 5 {

            break

        }

    }

}


我们可以通过context包来避免这个问题:

func main() {

    ctx, cancel := context.WithCancel(context.Background())



    ch := func(ctx context.Context) <-chan int {

        ch := make(chan int)

        go func() {

            for i := 0; ; i++ {

                select {

                case <- ctx.Done():

                    return

                case ch <- i:

                }

            }

        } ()

        return ch

    }(ctx)



    for v := range ch {

        fmt.Println(v)

        if v == 5 {

            cancel()

            break

        }

    }

}


 当main函数在break跳出循环时,通过调用cancel()来通知后台Goroutine退出,这样就避免了Goroutine的泄漏。

调度 

调度模型简介

groutine能拥有强大的并发实现是通过GPM调度模型实现,下面就来解释下goroutine的调度模型。

Go的调度器内部有四个重要的结构:M,P,S,Sched,如上图所示(Sched未给出)
M:M代表内核级线程,一个M就是一个线程,goroutine就是跑在M之上的;M是一个很大的结构,里面维护小对象内存cache(mcache)、当前执行的goroutine、随机数发生器等等非常多的信息
G:代表一个goroutine,它有自己的栈,instruction pointer和其他信息(正在等待的channel等等),用于调度。
P:P全称是Processor,处理器,它的主要用途就是用来执行goroutine的,所以它也维护了一个goroutine队列,里面存储了所有需要它来执行的goroutine

Sched:代表调度器,它维护有存储M和G的队列以及调度器的一些状态信息等。

调度实现

从上图中看,有2个物理线程M,每一个M都拥有一个处理器P,每一个也都有一个正在运行的goroutine。
P的数量可以通过GOMAXPROCS()来设置,它其实也就代表了真正的并发度,即有多少个goroutine可以同时运行。
图中灰色的那些goroutine并没有运行,而是出于ready的就绪态,正在等待被调度。P维护着这个队列(称之为runqueue),
Go语言里,启动一个goroutine很容易:go function 就行,所以每有一个go语句被执行,runqueue队列就在其末尾加入一个
goroutine,在下一个调度点,就从runqueue中取出(如何决定取哪个goroutine?)一个goroutine执行。

当一个OS线程M0陷入阻塞时(如下图),P转而在运行M1,图中的M1可能是正被创建,或者从线程缓存中取出。

当MO返回时,它必须尝试取得一个P来运行goroutine,一般情况下,它会从其他的OS线程那里拿一个P过来,
如果没有拿到的话,它就把goroutine放在一个global runqueue里,然后自己睡眠(放入线程缓存里)。所有的P也会周期性的检查global runqueue并运行其中的goroutine,否则global runqueue上的goroutine永远无法执行。

另一种情况是P所分配的任务G很快就执行完了(分配不均),这就导致了这个处理器P很忙,但是其他的P还有任务,此时如果global runqueue没有任务G了,那么P不得不从其他的P里拿一些G来执行。一般来说,如果P从其他的P那里要拿任务的话,一般就拿run queue的一半,这就确保了每个OS线程都能充分的使用,如下图:

关闭 

第一种:使用for-range退出

for-range是使用频率很高的结构,常用它来遍历数据,range能够感知channel的关闭,当channel被发送数据的协程关闭时,range就会结束,接着退出for循环。
它在并发中的使用场景是:当协程只从1个channel读取数据,然后进行处理,处理后协程退出。下面这个示例程序,当in通道被关闭时,协程可自动退出。

 
  1. go func(in <-chan int) {
    
    // Using for-range to exit goroutine
    
    // range has the ability to detect the close/end of a channel
    
    for x := range in {
    
    fmt.Printf("Process %d\n", x)
    
    }
    
    }(inCh)
  2.  

第二种:使用,ok退出

for-select也是使用频率很高的结构,select提供了多路复用的能力,所以for-select可以让函数具有持续多路处理多个channel的能力。但select没有感知channel的关闭,这引出了2个问题:1)继续在关闭的通道上读,会读到通道传输数据类型的零值,2)继续在关闭的通道上写,将会panic。问题2可使用的原则是,通道只由发送方关闭,接收方不可关闭,即某个写通道只由使用该select的协程关闭,select中就不存在继续在关闭的通道上写数据的问题。

问题1可以使用,ok来检测通道的关闭,使用情况有2种。
第一种:如果某个通道关闭后,需要退出协程,直接return即可。示例代码中,该协程需要从in通道读数据,还需要定时打印已经处理的数量,有2件事要做,所有不能使用for-range,需要使用for-select,当in关闭时,ok=false,我们直接返回。

 
  1. go func() {
    
    // in for-select using ok to exit goroutine
    
    for {
    
    select {
    
    case x, ok := <-in:
    
    if !ok {
    
    return
    
    }
    
    fmt.Printf("Process %d\n", x)
    
    processedCnt++
    
    case <-t.C:
    
    fmt.Printf("Working, processedCnt = %d\n", processedCnt)
    
    }
    
    }
    
    }()
  2.  

第二种:如果某个通道关闭了,不再处理该通道,而是继续处理其他case,退出是等待所有的可读通道关闭。我们需要使用select的一个特征:select不会在nil的通道上进行等待。这种情况,把只读通道设置为nil即可解决。


go func() {

// in for-select using ok to exit goroutine

for {

select {

case x, ok := <-in1:

if !ok {

in1 = nil

}

// Process

case y, ok := <-in2:

if !ok {

in2 = nil

}

// Process

case <-t.C:

fmt.Printf("Working, processedCnt = %d\n", processedCnt)

}


// If both in channel are closed, goroutine exit

if in1 == nil && in2 == nil {

return

}

}

}()

第三种:使用退出通道退出

使用,ok来退出使用for-select协程,解决是当读入数据的通道关闭时,没数据读时程序的正常结束。想想下面这2种场景,,ok还能适用吗?

  1. 接收的协程要退出了,如果它直接退出,不告知发送协程,发送协程将阻塞。
  2. 启动了一个工作协程处理数据,如何通知它退出?

使用一个专门的通道,发送退出的信号,可以解决这类问题。以第2个场景为例,协程入参包含一个停止通道stopCh,当stopCh被关闭,case <-stopCh会执行,直接返回即可。

当我启动了100个worker时,只要main()执行关闭stopCh,每一个worker都会都到信号,进而关闭。如果main()向stopCh发送100个数据,这种就低效了。


func worker(stopCh <-chan struct{}) {

go func() {

defer fmt.Println("worker exit")

// Using stop channel explicit exit

for {

select {

case <-stopCh:

fmt.Println("Recv stop signal")

return

case <-t.C:

fmt.Println("Working .")

}

}

}()

return

}
  1.  

最佳实践回顾

  1. 发送协程主动关闭通道,接收协程不关闭通道。技巧:把接收方的通道入参声明为只读(<-chan),如果接收协程关闭只读协程,编译时就会报错。
  2. 协程处理1个通道,并且是读时,协程优先使用for-range,因为range可以关闭通道的关闭自动退出协程。
  3. ,ok可以处理多个读通道关闭,需要关闭当前使用for-select的协程。
  4. 显式关闭通道stopCh可以处理主动通知协程退出的场景。
发布了84 篇原创文章 · 获赞 18 · 访问量 2万+

猜你喜欢

转载自blog.csdn.net/vjhghjghj/article/details/104086158