[深度学习从入门到女装]detectron2源码阅读-Trainer

detectron2是facebook的开源目标检测框架

/tools/train_net.py是进行网络训练和评估的主要文件,我们从这里开始阅读

if __name__ == "__main__":
    #os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'

    # --config-file --resume --eval-only --num-gpus --num-machines --machine-rank
    args = default_argument_parser().parse_args()
    print("Command Line Args:", args)

    #用于分布式gpu
    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )# -->main()

从主函数开始,首先是使用parse_args对命令行的参数进行解析,然后如果是分布式的GPU集群,需要使用launch函数进行操作

def main(args):
    cfg = setup(args)

    if args.eval_only:
        model = Trainer.build_model(cfg)
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
        res = Trainer.test(cfg, model)
        if comm.is_main_process():
            verify_results(cfg, res)
        if cfg.TEST.AUG.ENABLED:
            res.update(Trainer.test_with_TTA(cfg, model))
        return res

    """
    If you'd like to do anything fancier than the standard training logic,
    consider writing your own training loop or subclassing the trainer.
    """
    trainer = Trainer(cfg)
    trainer.resume_or_load(resume=args.resume)
    if cfg.TEST.AUG.ENABLED:
        trainer.register_hooks(
            [hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
        )
    return trainer.train()

接下来运行到main函数,首先是对整个工程的一些参数进行初始化,在整个框架中,将不同的模型参数储存在不同文件中,整个工程的默认参数储存在/detectron2/config/defaults.py中,采用fvcore.common.config的cfgNode作为参数的储存方式。对于各个模型和相应数据集的超参数存储在/configs/路径下。

在进行参数初始化之后,开始构造Trainer对象。

Trainer对象继承于DefaultTrainer,DefaultTrainer又继承于SimpleTrainer,SimpleTrainer再继承于TrainerBase,单单一个用于训练的类就继承了三次,可以说为了解耦是丧心病狂了。我们接下来一个一个来看这几个类。

class TrainerBase:
    """
    Base class for iterative trainer with hooks.

    The only assumption we made here is: the training runs in a loop.
    A subclass can implement what the loop is.
    We made no assumptions about the existence of dataloader, optimizer, model, etc.

    Attributes:
        iter(int): the current iteration.

        start_iter(int): The iteration to start with.
            By convention the minimum possible value is 0.

        max_iter(int): The iteration to end training.

        storage(EventStorage): An EventStorage that's opened during the course of training.
    """

    def __init__(self):
        self._hooks = []

    def register_hooks(self, hooks):
        """
        Register hooks to the trainer. The hooks are executed in the order
        they are registered.

        Args:
            hooks (list[Optional[HookBase]]): list of hooks
        """
        hooks = [h for h in hooks if h is not None]
        for h in hooks:
            assert isinstance(h, HookBase)
            # To avoid circular reference, hooks and trainer cannot own each other.
            # This normally does not matter, but will cause memory leak if the
            # involved objects contain __del__:
            # See http://engineering.hearsaysocial.com/2013/06/16/circular-references-in-python/
            h.trainer = weakref.proxy(self)
        self._hooks.extend(hooks)

    def train(self, start_iter: int, max_iter: int):
        """
        Args:
            start_iter, max_iter (int): See docs above
        """
        logger = logging.getLogger(__name__)
        logger.info("Starting training from iteration {}".format(start_iter))

        self.iter = self.start_iter = start_iter
        self.max_iter = max_iter

        with EventStorage(start_iter) as self.storage:
            try:
                self.before_train()
                for self.iter in range(start_iter, max_iter):
                    self.before_step()
                    self.run_step()
                    self.after_step()
            finally:
                self.after_train()

    def before_train(self):
        for h in self._hooks:
            h.before_train()

    def after_train(self):
        for h in self._hooks:
            h.after_train()

    def before_step(self):
        for h in self._hooks:
            h.before_step()

    def after_step(self):
        for h in self._hooks:
            h.after_step()
        # this guarantees, that in each hook's after_step, storage.iter == trainer.iter
        self.storage.step()

    def run_step(self):
        raise NotImplementedError

以上便是Trainer的最基础类,TrainerBase,这个类主要是用于构建整个训练结构,用于定义hook和训练的循环,hook是对应于每个训练步骤会进行的操作,存在有before_step,after_step,before_train,after_train。贯穿了整个训练过程中,这也是该框架的一个精髓所在,在后续我们会详细介绍这个hook机制。

class SimpleTrainer(TrainerBase):
    """
    A simple trainer for the most common type of task:
    single-cost single-optimizer single-data-source iterative optimization.
    It assumes that every step, you:

    1. Compute the loss with a data from the data_loader.
    2. Compute the gradients with the above loss.
    3. Update the model with the optimizer.

    If you want to do anything fancier than this,
    either subclass TrainerBase and implement your own `run_step`,
    or write your own training loop.
    """

    def __init__(self, model, data_loader, optimizer):
        """
        Args:
            model: a torch Module. Takes a data from data_loader and returns a
                dict of losses.
            data_loader: an iterable. Contains data to be used to call model.
            optimizer: a torch optimizer.
        """
        super().__init__()

        """
        We set the model to training mode in the trainer.
        However it's valid to train a model that's in eval mode.
        If you want your model (or a submodule of it) to behave
        like evaluation during training, you can overwrite its train() method.
        """
        model.train()

        self.model = model
        self.data_loader = data_loader
        self._data_loader_iter = iter(data_loader)
        self.optimizer = optimizer

    def run_step(self):
        """
        Implement the standard training logic described above.
        """
        assert self.model.training, "[SimpleTrainer] model was changed to eval mode!"
        start = time.perf_counter()
        """
        If your want to do something with the data, you can wrap the dataloader.
        """
        data = next(self._data_loader_iter)
        data_time = time.perf_counter() - start

        """
        If your want to do something with the losses, you can wrap the model.
        """
        loss_dict = self.model(data)
        losses = sum(loss for loss in loss_dict.values())
        self._detect_anomaly(losses, loss_dict)

        metrics_dict = loss_dict
        metrics_dict["data_time"] = data_time
        self._write_metrics(metrics_dict)

        """
        If you need accumulate gradients or something similar, you can
        wrap the optimizer with your custom `zero_grad()` method.
        """
        self.optimizer.zero_grad()
        losses.backward()

        """
        If you need gradient clipping/scaling or other processing, you can
        wrap the optimizer with your custom `step()` method.
        """
        self.optimizer.step()

    def _detect_anomaly(self, losses, loss_dict):
        if not torch.isfinite(losses).all():
            raise FloatingPointError(
                "Loss became infinite or NaN at iteration={}!\nloss_dict = {}".format(
                    self.iter, loss_dict
                )
            )

    def _write_metrics(self, metrics_dict: dict):
        """
        Args:
            metrics_dict (dict): dict of scalar metrics
        """
        metrics_dict = {
            k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v)
            for k, v in metrics_dict.items()
        }
        # gather metrics among all workers for logging
        # This assumes we do DDP-style training, which is currently the only
        # supported method in detectron2.
        all_metrics_dict = comm.gather(metrics_dict)

        if comm.is_main_process():
            if "data_time" in all_metrics_dict[0]:
                # data_time among workers can have high variance. The actual latency
                # caused by data_time is the maximum among workers.
                data_time = np.max([x.pop("data_time") for x in all_metrics_dict])
                self.storage.put_scalar("data_time", data_time)

            # average the rest metrics
            metrics_dict = {
                k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys()
            }
            total_losses_reduced = sum(loss for loss in metrics_dict.values())

            self.storage.put_scalar("total_loss", total_losses_reduced)
            if len(metrics_dict) > 1:
                self.storage.put_scalars(**metrics_dict)

在上述TrainerBase类中,我们只是将各个方法抽象出来,并不能直接使用,对于SimpleTrainer,已经是一个功能较为齐全的一个类了,在init函数中,将model、data_loader、optimizer传入到该trainer类,然后在run_step()进行每一次训练的循环。然后使用_write_metrics()函数将每个step的训练结果存在storage中。

class DefaultTrainer(SimpleTrainer):
    """
    A trainer with default training logic. Compared to `SimpleTrainer`, it
    contains the following logic in addition:

    1. Create model, optimizer, scheduler, dataloader from the given config.
    2. Load a checkpoint or `cfg.MODEL.WEIGHTS`, if exists.
    3. Register a few common hooks.

    It is created to simplify the **standard model training workflow** and reduce code boilerplate
    for users who only need the standard training workflow, with standard features.
    It means this class makes *many assumptions* about your training logic that
    may easily become invalid in a new research. In fact, any assumptions beyond those made in the
    :class:`SimpleTrainer` are too much for research.

    The code of this class has been annotated about restrictive assumptions it mades.
    When they do not work for you, you're encouraged to:

    1. Overwrite methods of this class, OR:
    2. Use :class:`SimpleTrainer`, which only does minimal SGD training and
       nothing else. You can then add your own hooks if needed. OR:
    3. Write your own training loop similar to `tools/plain_train_net.py`.

    Also note that the behavior of this class, like other functions/classes in
    this file, is not stable, since it is meant to represent the "common default behavior".
    It is only guaranteed to work well with the standard models and training workflow in detectron2.
    To obtain more stable behavior, write your own training logic with other public APIs.

    Attributes:
        scheduler:
        checkpointer (DetectionCheckpointer):
        cfg (CfgNode):
    """

    def __init__(self, cfg):
        """
        Args:
            cfg (CfgNode):
        """
        # Assume these objects must be constructed in this order.
        model = self.build_model(cfg)
        optimizer = self.build_optimizer(cfg, model)
        data_loader = self.build_train_loader(cfg)

        # For training, wrap with DDP. But don't need this for inference.
        if comm.get_world_size() > 1:
            model = DistributedDataParallel(
                model, device_ids=[comm.get_local_rank()], broadcast_buffers=False
            )
        super().__init__(model, data_loader, optimizer)

        self.scheduler = self.build_lr_scheduler(cfg, optimizer)
        # Assume no other objects need to be checkpointed.
        # We can later make it checkpoint the stateful hooks
        self.checkpointer = DetectionCheckpointer(
            # Assume you want to save checkpoints together with logs/statistics
            model,
            cfg.OUTPUT_DIR,
            optimizer=optimizer,
            scheduler=self.scheduler,
        )
        self.start_iter = 0
        self.max_iter = cfg.SOLVER.MAX_ITER
        self.cfg = cfg

        self.register_hooks(self.build_hooks())

    def resume_or_load(self, resume=True):
        """
        If `resume==True`, and last checkpoint exists, resume from it.

        Otherwise, load a model specified by the config.

        Args:
            resume (bool): whether to do resume or not
        """
        # The checkpoint stores the training iteration that just finished, thus we start
        # at the next iteration (or iter zero if there's no checkpoint).
        self.start_iter = (
            self.checkpointer.resume_or_load(self.cfg.MODEL.WEIGHTS, resume=resume).get(
                "iteration", -1
            )
            + 1
        )

    def build_hooks(self):
        """
        Build a list of default hooks, including timing, evaluation,
        checkpointing, lr scheduling, precise BN, writing events.

        Returns:
            list[HookBase]:
        """
        cfg = self.cfg.clone()
        cfg.defrost()
        cfg.DATALOADER.NUM_WORKERS = 0  # save some memory and time for PreciseBN

        ret = [
            hooks.IterationTimer(),
            hooks.LRScheduler(self.optimizer, self.scheduler),
            hooks.PreciseBN(
                # Run at the same freq as (but before) evaluation.
                cfg.TEST.EVAL_PERIOD,
                self.model,
                # Build a new data loader to not affect training
                self.build_train_loader(cfg),
                cfg.TEST.PRECISE_BN.NUM_ITER,
            )
            if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model)
            else None,
        ]

        # Do PreciseBN before checkpointer, because it updates the model and need to
        # be saved by checkpointer.
        # This is not always the best: if checkpointing has a different frequency,
        # some checkpoints may have more precise statistics than others.
        if comm.is_main_process():
            ret.append(hooks.PeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD))

        def test_and_save_results():
            self._last_eval_results = self.test(self.cfg, self.model)
            return self._last_eval_results

        # Do evaluation after checkpointer, because then if it fails,
        # we can use the saved checkpoint to debug.
        ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))

        if comm.is_main_process():
            # run writers in the end, so that evaluation metrics are written
            ret.append(hooks.PeriodicWriter(self.build_writers()))
        return ret

    def build_writers(self):
        """
        Build a list of writers to be used. By default it contains
        writers that write metrics to the screen,
        a json file, and a tensorboard event file respectively.
        If you'd like a different list of writers, you can overwrite it in
        your trainer.

        Returns:
            list[EventWriter]: a list of :class:`EventWriter` objects.

        It is now implemented by:

        .. code-block:: python

            return [
                CommonMetricPrinter(self.max_iter),
                JSONWriter(os.path.join(self.cfg.OUTPUT_DIR, "metrics.json")),
                TensorboardXWriter(self.cfg.OUTPUT_DIR),
            ]

        """
        # Assume the default print/log frequency.
        return [
            # It may not always print what you want to see, since it prints "common" metrics only.
            CommonMetricPrinter(self.max_iter),
            JSONWriter(os.path.join(self.cfg.OUTPUT_DIR, "metrics.json")),
            TensorboardXWriter(self.cfg.OUTPUT_DIR),
        ]

    def train(self):
        """
        Run training.

        Returns:
            OrderedDict of results, if evaluation is enabled. Otherwise None.
        """
        super().train(self.start_iter, self.max_iter)
        if hasattr(self, "_last_eval_results") and comm.is_main_process():
            verify_results(self.cfg, self._last_eval_results)
            return self._last_eval_results

    @classmethod
    def build_model(cls, cfg):
        """
        Returns:
            torch.nn.Module:

        It now calls :func:`detectron2.modeling.build_model`.
        Overwrite it if you'd like a different model.
        """
        model = build_model(cfg)
        logger = logging.getLogger(__name__)
        logger.info("Model:\n{}".format(model))
        return model

    @classmethod
    def build_optimizer(cls, cfg, model):
        """
        Returns:
            torch.optim.Optimizer:

        It now calls :func:`detectron2.solver.build_optimizer`.
        Overwrite it if you'd like a different optimizer.
        """
        return build_optimizer(cfg, model)

    @classmethod
    def build_lr_scheduler(cls, cfg, optimizer):
        """
        It now calls :func:`detectron2.solver.build_lr_scheduler`.
        Overwrite it if you'd like a different scheduler.
        """
        return build_lr_scheduler(cfg, optimizer)

    @classmethod
    def build_train_loader(cls, cfg):
        """
        Returns:
            iterable

        It now calls :func:`detectron2.data.build_detection_train_loader`.
        Overwrite it if you'd like a different data loader.
        """
        return build_detection_train_loader(cfg)

    @classmethod
    def build_test_loader(cls, cfg, dataset_name):
        """
        Returns:
            iterable

        It now calls :func:`detectron2.data.build_detection_test_loader`.
        Overwrite it if you'd like a different data loader.
        """
        return build_detection_test_loader(cfg, dataset_name)

    @classmethod
    def build_evaluator(cls, cfg, dataset_name):
        """
        Returns:
            DatasetEvaluator

        It is not implemented by default.
        """
        raise NotImplementedError

    @classmethod
    def test(cls, cfg, model, evaluators=None):
        """
        Args:
            cfg (CfgNode):
            model (nn.Module):
            evaluators (list[DatasetEvaluator] or None): if None, will call
                :meth:`build_evaluator`. Otherwise, must have the same length as
                `cfg.DATASETS.TEST`.

        Returns:
            dict: a dict of result metrics
        """
        logger = logging.getLogger(__name__)
        if isinstance(evaluators, DatasetEvaluator):
            evaluators = [evaluators]
        if evaluators is not None:
            assert len(cfg.DATASETS.TEST) == len(evaluators), "{} != {}".format(
                len(cfg.DATASETS.TEST), len(evaluators)
            )

        results = OrderedDict()
        for idx, dataset_name in enumerate(cfg.DATASETS.TEST):
            data_loader = cls.build_test_loader(cfg, dataset_name)
            # When evaluators are passed in as arguments,
            # implicitly assume that evaluators can be created before data_loader.
            evaluator = (
                evaluators[idx]
                if evaluators is not None
                else cls.build_evaluator(cfg, dataset_name)
            )
            results_i = inference_on_dataset(model, data_loader, evaluator)
            results[dataset_name] = results_i
            if comm.is_main_process():
                assert isinstance(
                    results_i, dict
                ), "Evaluator must return a dict on the main process. Got {} instead.".format(
                    results_i
                )
                logger.info("Evaluation results for {} in csv format:".format(dataset_name))
                print_csv_format(results_i)

        if len(results) == 1:
            results = list(results.values())[0]
        return results

相较于SimpleTrainer的区别在注释中也提到了,增加了创建model,optimizer,schedular,dataloader的操作,可以进行checkpoint的load,然后提供了一些比较公用的hook

model的创建在后续会讲到,

def build_optimizer(cfg: CfgNode, model: torch.nn.Module) -> torch.optim.Optimizer:
    """
    Build an optimizer from config.
    """
    params: List[Dict[str, Any]] = []
    for key, value in model.named_parameters():
        if not value.requires_grad:
            continue
        lr = cfg.SOLVER.BASE_LR
        weight_decay = cfg.SOLVER.WEIGHT_DECAY
        if key.endswith("norm.weight") or key.endswith("norm.bias"):
            weight_decay = cfg.SOLVER.WEIGHT_DECAY_NORM
        elif key.endswith(".bias"):
            # NOTE: unlike Detectron v1, we now default BIAS_LR_FACTOR to 1.0
            # and WEIGHT_DECAY_BIAS to WEIGHT_DECAY so that bias optimizer
            # hyperparameters are by default exactly the same as for regular
            # weights.
            lr = cfg.SOLVER.BASE_LR * cfg.SOLVER.BIAS_LR_FACTOR
            weight_decay = cfg.SOLVER.WEIGHT_DECAY_BIAS
        params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}]

    optimizer = torch.optim.SGD(params, lr, momentum=cfg.SOLVER.MOMENTUM)
    return optimizer


def build_lr_scheduler(
    cfg: CfgNode, optimizer: torch.optim.Optimizer
) -> torch.optim.lr_scheduler._LRScheduler:
    """
    Build a LR scheduler from config.
    """
    name = cfg.SOLVER.LR_SCHEDULER_NAME
    if name == "WarmupMultiStepLR":
        return WarmupMultiStepLR(
            optimizer,
            cfg.SOLVER.STEPS,
            cfg.SOLVER.GAMMA,
            warmup_factor=cfg.SOLVER.WARMUP_FACTOR,
            warmup_iters=cfg.SOLVER.WARMUP_ITERS,
            warmup_method=cfg.SOLVER.WARMUP_METHOD,
        )
    elif name == "WarmupCosineLR":
        return WarmupCosineLR(
            optimizer,
            cfg.SOLVER.MAX_ITER,
            warmup_factor=cfg.SOLVER.WARMUP_FACTOR,
            warmup_iters=cfg.SOLVER.WARMUP_ITERS,
            warmup_method=cfg.SOLVER.WARMUP_METHOD,
        )
    else:
        raise ValueError("Unknown LR scheduler: {}".format(name))

optimizer,schedular的创建以上所示。

class Trainer(DefaultTrainer):
    """
    We use the "DefaultTrainer" which contains a number pre-defined logic for
    standard training workflow. They may not work for you, especially if you
    are working on a new research project. In that case you can use the cleaner
    "SimpleTrainer", or write your own training loop.
    """

    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        """
        Create evaluator(s) for a given dataset.
        This uses the special metadata "evaluator_type" associated with each builtin dataset.
        For your own dataset, you can simply create an evaluator manually in your
        script and do not have to worry about the hacky if-else logic here.
        """
        if output_folder is None:
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
        evaluator_list = []
        evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
        if evaluator_type in ["sem_seg", "coco_panoptic_seg"]:
            evaluator_list.append(
                SemSegEvaluator(
                    dataset_name,
                    distributed=True,
                    num_classes=cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
                    ignore_label=cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
                    output_dir=output_folder,
                )
            )
        if evaluator_type in ["coco", "coco_panoptic_seg"]:
            evaluator_list.append(COCOEvaluator(dataset_name, cfg, True, output_folder))
        if evaluator_type == "coco_panoptic_seg":
            evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
        if evaluator_type == "cityscapes":
            assert (
                torch.cuda.device_count() >= comm.get_rank()
            ), "CityscapesEvaluator currently do not work with multiple machines."
            return CityscapesEvaluator(dataset_name)
        if evaluator_type == "pascal_voc":
            return PascalVOCDetectionEvaluator(dataset_name)
        if evaluator_type == "lvis":
            return LVISEvaluator(dataset_name, cfg, True, output_folder)
        if len(evaluator_list) == 0:
            raise NotImplementedError(
                "no Evaluator for the dataset {} with the type {}".format(
                    dataset_name, evaluator_type
                )
            )
        if len(evaluator_list) == 1:
            return evaluator_list[0]
        return DatasetEvaluators(evaluator_list)

    @classmethod
    def test_with_TTA(cls, cfg, model):
        logger = logging.getLogger("detectron2.trainer")
        # In the end of training, run an evaluation with TTA
        # Only support some R-CNN models.
        logger.info("Running inference with test-time augmentation ...")
        model = GeneralizedRCNNWithTTA(cfg, model)
        evaluators = [
            cls.build_evaluator(
                cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
            )
            for name in cfg.DATASETS.TEST
        ]
        res = cls.test(cfg, model, evaluators)
        res = OrderedDict({k + "_TTA": v for k, v in res.items()})
        return res

Trainer是该框架针对于各个数据集和任务进行的类构建。

发布了164 篇原创文章 · 获赞 36 · 访问量 5万+

猜你喜欢

转载自blog.csdn.net/py184473894/article/details/103350332