一个通用方法解决六种股票问题

一个通用方法解决股票问题

1.穷举框架

  利用「状态」进行穷举。我们具体到每一天,看看总共有几种可能的「状态」,再找出每个「状态」对应的「选择」。我们要穷举所有「状态」,穷举的目的是根据对应的「选择」更新状态。听起来抽象,你只要记住「状态」和「选择」两个词就行,下面实操一下就很容易明白了。

for 状态1 in 状态1的所有取值:
    for 状态2 in 状态2的所有取值:
        for ...
            dp[状态1][状态2][...] = 择优(选择1,选择2...)
            

  比如说这个问题,每天都有三种「选择」:买入、卖出、无操作,我们用 buy, sell, rest 表示这三种选择。但问题是,并不是每天都可以任意选择这三种选择的,因为 sell 必须在 buy 之后,buy 必须在 sell 之后。那么 rest 操作还应该分两种状态,一种是 buy 之后的 rest(持有了股票),一种是 sell 之后的 rest(没有持有股票)。而且别忘了,我们还有交易次数 k 的限制,就是说你 buy 还只能在 k > 0 的前提下操作。
  这个问题的「状态」有三个,第一个是天数,第二个是允许交易的最大次数,第三个是当前的持有状态(即之前说的 rest 的状态,我们不妨用 1 表示持有,0 表示没有持有)。然后我们用一个三维数组就可以装下这几种状态的全部组合:

dp[i][k][0 or 1]
0 <= i <= n-1, 1 <= k <= K
n 为天数,大 K 为最多交易数
此问题共 n × K × 2 种状态,全部穷举就能搞定。

for 0 <= i < n:
    for 1 <= k <= K:
        for s in {0, 1}:
            dp[i][k][s] = max(buy, sell, rest)

  而且我们可以用自然语言描述出每一个状态的含义,比如说 dp[3][2][1] 的含义就是:今天是第三天,我现在手上持有着股票,至今最多进行 2 次交易。再比如 dp[2][3][0] 的含义:今天是第二天,我现在手上没有持有股票,至今最多进行 3 次交易。
  我们想求的最终答案是 dp[n - 1][K][0],即最后一天,最多允许 K 次交易,最多获得多少利润。读者可能问为什么不是 dp[n - 1][K][1]?因为 [1] 代表手上还持有股票,[0] 表示手上的股票已经卖出去了,很显然后者得到的利润一定大于前者。

2.状态转移框架

  现在,我们完成了「状态」的穷举,我们开始思考每种「状态」有哪些「选择」,应该如何更新「状态」。只看「持有状态」,可以画个状态转移图。
在这里插入图片描述
  通过这个图可以很清楚地看到,每种状态(0 和 1)是如何转移而来的。根据这个图,我们来写一下状态转移方程:

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
              max(   选择 rest  ,           选择 sell      )

解释:今天我没有持有股票,有两种可能:
要么是我昨天就没有持有,然后今天选择 rest,所以我今天还是没有持有;
要么是我昨天持有股票,但是今天我 sell 了,所以我今天没有持有股票了。

dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
              max(   选择 rest  ,           选择 buy         )

解释:今天我持有着股票,有两种可能:
要么我昨天就持有着股票,然后今天选择 rest,所以我今天还持有着股票;
要么我昨天本没有持有,但今天我选择 buy,所以今天我就持有股票了。

  如果 buy,就要从利润中减去 prices[i],如果 sell,就要给利润增加 prices[i]。今天的最大利润就是这两种可能选择中较大的那个。而且注意 k 的限制,我们在选择 buy 的时候,把 k 减小了 1,当然也可以在 sell 的时候减 1,一样的。
定义 base case,即最简单的情况:

dp[-1][k][0] = 0
解释:因为 i 是从 0 开始的,所以 i = -1 意味着还没有开始,这时候的利润当然是 0 。
dp[-1][k][1] = -infinity
解释:还没开始的时候,是不可能持有股票的,用负无穷表示这种不可能。
dp[i][0][0] = 0
解释:因为 k 是从 1 开始的,所以 k = 0 意味着根本不允许交易,这时候利润当然是 0 。
dp[i][0][1] = -infinity
解释:不允许交易的情况下,是不可能持有股票的,用负无穷表示这种不可能。

把上面的状态转移方程总结一下:
base case:
dp[-1][k][0] = dp[i][0][0] = 0
dp[-1][k][1] = dp[i][0][1] = -infinity

状态转移方程:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

3.套用框架做题

第一题,k = 1
直接套状态转移方程,根据 base case,可以做一些化简:

dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], dp[i-1][0][0] - prices[i]) 
            = max(dp[i-1][1][1], -prices[i])
解释:k = 0 的 base case,所以 dp[i-1][0][0] = 0。

现在发现 k 都是 1,不会改变,即 k 对状态转移已经没有影响了。
可以进行进一步化简去掉所有 k:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], -prices[i])

直接写出代码:

//k == 1
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int dp_i0 = 0, dp_i1 = INT_MIN;
        for(auto &price : prices){
            dp_i0 = max(dp_i0,dp_i1 + price);
            dp_i1 = max(dp_i1,-price);
        }
        return dp_i0;
    }
};

第二题,k = +infinity
如果 k 为正无穷,那么就可以认为 k 和 k - 1 是一样的。可以这样改写框架:

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
            = max(dp[i-1][k][1], dp[i-1][k][0] - prices[i])

我们发现数组中的 k 已经不会改变了,也就是说不需要记录 k 这个状态了:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])

直接得出代码:

int maxProfit_k_inf(vector<int>& prices) {
    int dp_i0 = 0, dp_i1 = INT_MIN;
    for (auto &price : prices) {
        int temp = dp_i0;
        dp_i0 = max(dp_i0, dp_i1 + price);
        dp_i1 = max(dp_i1, temp - price);
    }
    return dp_i0;
}

第三题,k = +infinity with cooldown
每次 sell 之后要等一天才能继续交易。只要把这个特点融入上一题的状态转移方程即可:

dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-2][0] - prices[i])
解释:第 i 天选择 buy 的时候,要从 i-2 的状态转移,而不是 i-1

翻译成代码:

int maxProfit_with_cool(vector<int>& prices) {
    int dp_i0 = 0, dp_i1 = INT_MIN;
    int dp_pre0 = 0; // 代表 dp[i-2][0]
    for (auto &price : prices) {
        int temp = dp_i0;
        dp_i0 = max(dp_i0, dp_i1 + price);
        dp_i1 = max(dp_i1, dp_pre0 - price);
        dp_pre0 = temp;
    }
    return dp_i0;
}

第四题,k = +infinity with fee
每次交易要支付手续费,只要把手续费从利润中减去即可。改写方程:

dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i] - fee)
解释:相当于买入股票的价格升高了。
在第一个式子里减也是一样的,相当于卖出股票的价格减小了。

直接翻译成代码:

int maxProfit_with_fee(vector<int>& prices, int fee) {
    int dp_i0 = 0, dp_i1 = INT_MIN;
    for (auto &price : prices) {
        int temp = dp_i0;
        dp_i0 = max(dp_i0, dp_i1 + price);
        dp_i1 = max(dp_i1, temp - prices - fee);
    }
    return dp_i0;
}

第五题,k = 2
k = 2 和前面题目的情况稍微不同,因为上面的情况都和 k 的关系不太大。要么 k 是正无穷,状态转移和 k 没关系了;要么 k = 1,跟 k = 0 这个 base case 挨得近,最后也没有存在感。
这道题 k = 2 和后面要讲的 k 是任意正整数的情况中,对 k 的处理就凸显出来了。我们直接写代码,边写边分析原因。

原始的动态转移方程,没有可化简的地方
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

这里 k 取值范围比较小,所以可以不用 for 循环,直接把 k = 1 和 2 的情况手动列举出来也可以:

dp[i][2][0] = max(dp[i-1][2][0], dp[i-1][2][1] + prices[i])
dp[i][2][1] = max(dp[i-1][2][1], dp[i-1][1][0] - prices[i])
dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], -prices[i])

int maxProfit_k_2(vector<int>& prices) {
    int dp_i10 = 0, dp_i11 = INT_MIN;
    int dp_i20 = 0, dp_i21 = INT_MIN;
    for (auto &price : prices) {
        dp_i20 = max(dp_i20, dp_i21 + price);
        dp_i21 = max(dp_i21, dp_i10 - price);
        dp_i10 = max(dp_i10, dp_i11 + price);
        dp_i11 = max(dp_i11, -price);
    }
    return dp_i20;
}

第六题,k = any integer
有了上一题 k = 2 的铺垫,这题应该和上一题的第一个解法没啥区别。但是出现了一个超内存的错误,原来是传入的 k 值会非常大,dp 数组太大了。现在想想,交易次数 k 最多有多大呢?
一次交易由买入和卖出构成,至少需要两天。所以说有效的限制 k 应该不超过 n/2,如果超过,就没有约束作用了,相当于 k = +infinity。这种情况是之前解决过的。
直接把之前的代码重用:

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {
        int n = prices.size();
        if(k > n/2){
            return maxProfitInfinity(prices);
        }
        int dp[n][k+1][2]{0};
        for(int i = 0;i < n; ++i){
            for(int j = k;j >= 1;j--){
                if(i == 0){
                    dp[i][j][0] = 0;//第一天买入j次,当天卖出j次,收入为0
                     // 解释:
			        //   dp[i][0] 
			        // = max(dp[-1][0], dp[-1][1] + prices[i])
			        // = max(0, -infinity + prices[i]) = 0
                    dp[i][j][1] = -prices[i];//甭管第一天买多少次,反正最后少卖一次,持有了股票
                    //解释:
			        //   dp[i][1] 
			        // = max(dp[-1][1], dp[-1][0] - prices[i])
			        // = max(-infinity, 0 - prices[i]) 
			        // = -prices[i]
			        continue;
                }
                dp[i][j][0] = max(dp[i-1][j][0],dp[i-1][j][1]+prices[i]);
                dp[i][j][1] = max(dp[i-1][j][1],dp[i-1][j-1][0]-prices[i]);
            }
        }
        return dp[n-1][k][0];
    }
    int maxProfitInfinity(vector<int>& prices){
        int dp_i0 = 0, dp_i1 = INT_MIN;
        for(auto &price : prices){
            int temp = dp_i0;
            dp_i0 = max(dp_i0, dp_i1 + price);
            dp_i1 = max(dp_i1, temp - price);
        }
        return dp_i0;
    }
};

至此,6 道题目通过一个状态转移方程全部解决。

发布了146 篇原创文章 · 获赞 0 · 访问量 2964

猜你喜欢

转载自blog.csdn.net/jiangdongxiaobawang/article/details/104276533