Innodb事务中的锁实现(转)

目录

一次封锁or两段锁?

MySQL中锁的种类

MVCC在MySql的InnoDB中的实现

1、RR级别的事务隔离级别真的无法解决幻读吗?答案是否

2、Mysql如何做到RR事务隔离级别下不会出现幻读(Next-Key锁=GAP锁+行锁)

Serializable


一次封锁or两段锁?

       因为有大量的并发访问,为了预防死锁,一般应用中推荐使用一次封锁法,就是在方法的开始阶段,已经预先知道会用到哪些数据,然后全部锁住,在方法运行之后,再全部解锁。这种方式可以有效的避免循环死锁,但在数据库中却不适用,因为在事务开始阶段,数据库并不知道会用到哪些数据。

数据库遵循的是两段锁协议,将事务分成两个阶段,加锁阶段和解锁阶段(所以叫两段锁)

  • 加锁阶段:在该阶段可以进行加锁操作。在对任何数据进行读操作之前要申请并获得S锁(共享锁,其它事务可以继续加共享锁,但不能加排它锁),在进行写操作之前要申请并获得X锁(排它锁,其它事务不能再获得任何锁)。加锁不成功,则事务进入等待状态,直到加锁成功才继续执行。
  • 解锁阶段:当事务释放了一个封锁以后,事务进入解锁阶段,在该阶段只能进行解锁操作不能再进行加锁操作。
事务 加锁/解锁处理
begin;  
insert into test ….. 加insert对应的锁
update test set… 加update对应的锁
delete from test …. 加delete对应的锁
commit; 事务提交时,同时释放insert、update、delete对应的锁

        这种方式虽然无法避免死锁,但是两段锁协议可以保证事务的并发调度是串行化(串行化很重要,尤其是在数据恢复和备份的时候)的。

       Mysql、Oracle、PostgreSql等成熟的数据库,出于性能的考虑,都是采用以乐观锁为理论基础的MVCC(多版本并发控制)来避免脏读、不可重复读、幻读三个问题的;

(

1、不可重复读和幻读的区别

        很多人容易搞混不可重复读和幻读,确实这两者有些相似。但不可重复读重点在于update和delete,而幻读的重点在于insert。

        如果使用锁机制来实现这两种隔离级别,在可重复读中,该sql第一次读取到数据后,就将这些数据加锁,其它事务无法修改这些数据,就可以实现可重复读了。但这种方法却无法锁住insert的数据,所以当事务A先前读取了数据,或者修改了全部数据,事务B还是可以insert数据提交,这时事务A就会发现莫名其妙多了一条之前没有的数据,这就是幻读,不能通过行锁来避免。需要Serializable隔离级别 ,读用读锁,写用写锁,读锁和写锁互斥,这么做可以有效的避免幻读、不可重复读、脏读等问题,但会极大的降低数据库的并发能力。

2、悲观锁和乐观锁区别

  • 悲观锁:指对数据被外界(包括本系统当前的其他事物,以及来自外部系统的事物处理)修改持保守态度,在整个数据处理过程中,数据处于锁定状态。悲观锁实现依靠的是数据库提供的锁机制以(只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,仍然无法避免外部系统对数据的修改)。为了保证事务的隔离性,需要一致性锁定读。读取数据时加锁,其他事务无法修改这些数据。修改、删除数据时也要加锁,其他事务无法读取这些数据。
  • 乐观锁:相对悲观锁而言,乐观锁采取的机制更加宽松;悲观锁依赖数据库的锁机制实现,以保证最大程度的独占性。但随之而来的是数据库性能的大量开销,特别是对长事务而言,这样的开销往往无法承受;乐观锁在一定程度上解决了这个问题。大多采用数据版本(Version)记录机制实现。数据版本:为数据添加的一个版本标识,一般是通过为数据表增加一个"version"字段来实现。读取数据是将此版本号一同读出,之后更新时,对版本号加一;此时,将提交数据的版本与数据库表中对应记录的当前版本进行对比,如果提交的版本号大于数据库表数据当前版本号,则予以更新,否则认为是过期数据。

MySQL中锁的种类

MySQL中锁的种类很多,有常见的表锁和行锁,也有新加入的Metadata Lock等等,表锁是对一整张表加锁,虽然可分为读锁和写锁,但毕竟是锁住整张表,会导致并发能力下降,一般是做ddl处理时使用。

行锁则是锁住数据行,这种加锁方法比较复杂,但是由于只锁住有限的数据,对于其它数据不加限制,所以并发能力强,MySQL一般都是用行锁来处理并发事务。这里主要讨论的也就是行锁。

Read Committed(读取提交内容)

在RC级别中,数据的读取都是不加锁的,但是数据的写入、修改和删除是需要加锁的。效果如下

MySQL> show create table class_teacher \G\
Table: class_teacher
Create Table: CREATE TABLE `class_teacher` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `class_name` varchar(100) COLLATE utf8mb4_unicode_ci NOT NULL,
  `teacher_id` int(11) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_teacher_id` (`teacher_id`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci
1 row in set (0.02 sec)
MySQL> select * from class_teacher;
+----+--------------+------------+
| id | class_name   | teacher_id |
+----+--------------+------------+
|  1 | 初三一班     |          1 |
|  3 | 初二一班     |          2 |
|  4 | 初二二班     |          2 |
+----+--------------+------------+

由于MySQL的InnoDB默认是使用的RR级别,所以我们先要将该session开启成RC级别,并且设置binlog的模式

SET session transaction isolation level read committed;
SET SESSION binlog_format = 'ROW';(或者是MIXED)
事务A 事务B
begin; begin;
update class_teacher set class_name=‘初三二班’ where teacher_id=1; update class_teacher set class_name=‘初三三班’ where teacher_id=1;
commit;  

为了防止并发过程中的修改冲突,事务A中MySQL给teacher_id=1的数据行加锁,并一直不commit(释放锁),那么事务B也就一直拿不到该行锁,wait直到超时。

这时我们要注意到,teacher_id是有索引的,如果是没有索引的class_name呢?update class_teacher set teacher_id=3 where class_name = ‘初三一班’; 那么MySQL会给整张表的所有数据行的加行锁。这里听起来有点不可思议,但是当sql运行的过程中,MySQL并不知道哪些数据行是 class_name = ‘初三一班’的(没有索引嘛),如果一个条件无法通过索引快速过滤,存储引擎层面就会将所有记录加锁后返回,再由MySQL Server层进行过滤。

但在实际使用过程当中,MySQL做了一些改进,在MySQL Server过滤条件,发现不满足后,会调用unlock_row方法,把不满足条件的记录释放锁 (违背了二段锁协议的约束)。这样做,保证了最后只会持有满足条件记录上的锁,但是每条记录的加锁操作还是不能省略的。可见即使是MySQL,为了效率也是会违反规范的。(参见《高性能MySQL》中文第三版p181)

这种情况同样适用于MySQL的默认隔离级别RR。所以对一个数据量很大的表做批量修改的时候,如果无法使用相应的索引,MySQL Server过滤数据的的时候特别慢,就会出现虽然没有修改某些行的数据,但是它们还是被锁住了的现象。

MVCC在MySql的InnoDB中的实现

       InnoDB为每行数据添加两个额外的隐藏值来实现MVCC,这两个值一个记录这行数据何时被创建(or更新),一个记录这行记录很是被删除。在实际操作中,存储的就是事务的版本号,没开启一个新的事务,事务的版本号会递增。在可重复读Rapeatabel Read事务隔离级别下:

  • SELECT时,读取的创建版本号<=当前事务版本号,删除版本号为null或>当前事务版本号(这里主要是考虑了事务开启过程中多次读取)
  • INSERT时,保存的是当前事务版本号为行的创建版本号
  • DELETE时,保存的是当前事务版本号为行的删除版本号
  • UPDATE时,插入一条新纪录,保存当前事务版本号为行的创建版本号,同时保存当前事务版本号到原来删除的行。

MVCC虽然要为每行记录开辟额外的存储空间,内部会有更多的检查工作、维护工作,但可以减少锁的使用,大多数读操作都不用加锁;

1、RR级别的事务隔离级别真的无法解决幻读吗?答案是否

        我们不管从数据库方面的教课书中学到,还是从网络上看到,大都是上文中事务的四种隔离级别这一模块列出的意思,RR级别是可重复读的,但无法解决幻读,而只有在Serializable级别才能解决幻读。于是我就加了一个事务C来展示效果。在事务C中添加了一条teacher_id=1的数据commit,RR级别中应该会有幻读现象,事务A在查询teacher_id=1的数据时会读到事务C新加的数据。但是测试后发现,在MySQL中是不存在这种情况的,在事务C提交后,事务A还是不会读到这条数据。可见在MySQL的RR级别中,是解决了幻读的读问题的。参见下图

innodb_lock_1

读问题解决了,根据MVCC的定义,并发提交数据时会出现冲突,那么冲突时如何解决呢?我们再来看看InnoDB中RR级别对于写数据的处理。

(1)、“读”与“读”的区别

        可能有人会疑惑,事务的隔离级别其实都是对于读数据的定义,但到了这里,就被拆成了读和写两个模块来讲解。这主要是因为MySQL中的读,和事务隔离级别中的读,是不一样的。

        我们且看,在RR级别中,通过MVCC机制,虽然让数据变得可重复读,但我们读到的数据可能是历史数据,是不及时的数据,不是数据库当前的数据!这在一些对于数据的时效特别敏感的业务中,就很可能出问题。

对于这种读取历史数据的方式,我们叫它快照读 (snapshot read),而读取数据库当前版本数据的方式,叫当前读 (current read)。很显然,在MVCC中:

  • 快照读:就是select
    • select * from table ….;
  • 当前读:特殊的读操作,插入/更新/删除操作,属于当前读,处理的都是当前的数据,需要加锁。
    • select * from table where ? lock in share mode;
    • select * from table where ? for update;
    • insert;
    • update ;
    • delete;

事务的隔离级别实际上都是定义了当前读的级别,MySQL为了减少锁处理(包括等待其它锁)的时间,提升并发能力,引入了快照读的概念,使得select不用加锁。而update、insert这些“当前读”,就需要另外的模块来解决了

(2)、写(”当前读”)

         事务的隔离级别中虽然只定义了读数据的要求,实际上这也可以说是写数据的要求。上文的“读”,实际是讲的快照读;而这里说的“写”就是当前读了。

为了解决当前读中的幻读问题,MySQL事务使用了Next-Key锁。

2、Mysql如何做到RR事务隔离级别下不会出现幻读(Next-Key锁=GAP锁+行锁)

      行锁(是mvcc版的乐观锁)防止别的事务修改或删除,GAP锁防止别的事务新增,行锁和GAP锁结合形成的的Next-Key锁共同解决了RR级别在写数据时的幻读问题。

(1)、Next-Key锁

Next-Key锁是行锁和GAP(间隙锁)的合并,行锁上文已经介绍了,接下来说下GAP间隙锁。

行锁可以防止不同事务版本的数据修改提交时造成数据冲突的情况。但如何避免别的事务插入数据就成了问题。我们可以看看RR级别和RC级别的对比

RC级别:

事务A 事务B
begin;

begin;

select id,class_name,teacher_id from class_teacher where teacher_id=30;

id class_name teacher_id
2 初三二班 30
 
update class_teacher set class_name='初三四班' where teacher_id=30;

insert into class_teacher values (null,'初三二班',30);

commit;

select id,class_name,teacher_id from class_teacher where teacher_id=30;

id class_name teacher_id
2 初三四班 30
10 初三二班 30
 

RR级别:

事务A 事务B
begin;

begin;

select id,class_name,teacher_id from class_teacher where teacher_id=30;

id class_name teacher_id
2 初三二班 30
 
update class_teacher set class_name='初三四班' where teacher_id=30;

insert into class_teacher values (null,'初三二班',30);

waiting....

select id,class_name,teacher_id from class_teacher where teacher_id=30;

id class_name teacher_id
2 初三四班 30
 
commit; 事务Acommit后,事务B的insert执行。

通过对比我们可以发现,在RC级别中,事务A修改了所有teacher_id=30的数据,但是当事务Binsert进新数据后,事务A发现莫名其妙多了一行teacher_id=30的数据,而且没有被之前的update语句所修改,这就是“当前读”的幻读。

RR级别中,事务A在update后加锁,事务B无法插入新数据,这样事务A在update前后读的数据保持一致,避免了幻读。这个锁,就是Gap锁。

MySQL是这么实现的:

在class_teacher这张表中,teacher_id是个索引,那么它就会维护一套B+树的数据关系,为了简化,我们用链表结构来表达(实际上是个树形结构,但原理相同)

innodb_lock_2

如图所示,InnoDB使用的是聚集索引,teacher_id身为二级索引,就要维护一个索引字段和主键id的树状结构(这里用链表形式表现),并保持顺序排列。

Innodb将这段数据分成几个个区间

  • (negative infinity, 5],
  • (5,30],
  • (30,positive infinity);

update class_teacher set class_name=‘初三四班’ where teacher_id=30;不仅用行锁,锁住了相应的数据行;同时也在两边的区间,(5,30]和(30,positive infinity),都加入了gap锁。这样事务B就无法在这个两个区间insert进新数据。

受限于这种实现方式,Innodb很多时候会锁住不需要锁的区间。如下所示:

事务A 事务B 事务C
begin; begin; begin;

select id,class_name,teacher_id from class_teacher;

id class_name teacher_id
1 初三一班

5

2 初三二班 30
   
update class_teacher set class_name='初一一班' where teacher_id=20;    
 

insert into class_teacher values (null,'初三五班',10);

waiting .....

insert into class_teacher values (null,'初三五班',40);
commit; 事务A commit之后,这条语句才插入成功 commit;
  commit;  

update的teacher_id=20是在(5,30]区间,即使没有修改任何数据,Innodb也会在这个区间加gap锁,而其它区间不会影响,事务C正常插入。

如果使用的是没有索引的字段,比如update class_teacher set teacher_id=7 where class_name=‘初三八班(即使没有匹配到任何数据)’,那么会给全表加入gap锁。同时,它不能像上文中行锁一样经过MySQL Server过滤自动解除不满足条件的锁,因为没有索引,则这些字段也就没有排序,也就没有区间。除非该事务提交,否则其它事务无法插入任何数据。

行锁防止别的事务修改或删除,GAP锁防止别的事务新增,行锁和GAP锁结合形成的的Next-Key锁共同解决了RR级别在写数据时的幻读问题。

Serializable

这个级别很简单,读加共享锁,写加排他锁,读写互斥。使用的悲观锁的理论,实现简单,数据更加安全,但是并发能力非常差。如果你的业务并发的特别少或者没有并发,同时又要求数据及时可靠的话,可以使用这种模式。

这里要吐槽一句,不要看到select就说不会加锁了,在Serializable这个级别,还是会加锁的!

转载来源:https://tech.meituan.com/2014/08/20/innodb-lock.html

还需关注文章:Mysql中“select ... for update”排他锁分析

发布了12 篇原创文章 · 获赞 1 · 访问量 771

猜你喜欢

转载自blog.csdn.net/a1290123825/article/details/90765461