Energy Density Conservation Equation

Thermal energy evolution equation
U t = q ( U v ) ( P v ) + v ( P ) \frac{\partial U}{\partial t}=-\bm{\nabla \cdot q}-\bm{\nabla \cdot} (U\bm{v})-\bm{\nabla \cdot }(\bm{{\rm P}\cdot v}) + \bm{v \cdot}(\bm{\nabla \cdot {\rm P}})

U U is the thermal energy density. t t is the time. q \bm{q} is the heat flux vector. v \bm{v} is the bulk velocity. P \bm{\rm P} is the pressure tensor.

Continuity equation
n t + ( n v ) = 0 \frac{\partial n}{\partial t} + \bm{\nabla \cdot} (n \bm{v}) = 0

Where n n is the number density of a species.

Because
U = 1 2 ( P x x + P y y + P z z ) U=\frac{1}{2}(P_{xx}+P_{yy}+P_{zz})

We consider the kinetic temperature T T
T = 1 3 P x x + P y y + P z z n T=\frac{1}{3}\frac{P_{xx}+P_{yy}+P_{zz}}{n}

Then, the relationship between thermal energy U U and temperature T T
U = 3 2 n T U=\frac{3}{2}nT

Then
U t = t ( 3 2 n T ) = 3 2 T n t + 3 2 n T t = 3 2 n T t 3 2 T ( n v ) \frac{\partial U}{\partial t} = \frac{\partial}{\partial t}(\frac{3}{2}nT)=\frac{3}{2}T\frac{\partial n}{\partial t} + \frac{3}{2}n\frac{\partial T}{\partial t}=\frac{3}{2}n\frac{\partial T}{\partial t}-\frac{3}{2}T\bm{\nabla \cdot}(n \bm{v})

And
( P v ) = v ( P ) + ( P ) v \bm{\nabla \cdot }(\bm{{\rm P} \cdot v})=\bm{v \cdot } (\bm{\nabla \cdot {\rm P}})+(\bm{{\rm P}\cdot \nabla})\bm{\cdot v}

Then
U t = q ( U v ) ( P ) v \frac{\partial U}{\partial t}=-\bm{\nabla \cdot q}-\bm{\nabla \cdot} (U\bm{v})-(\bm{{\rm P}\cdot \nabla})\bm{\cdot v}

And
( U v ) = ( 3 2 n T v ) = 3 2 T ( n v ) + 3 2 n v T \bm{\nabla \cdot} (U\bm{v})=\bm{\nabla \cdot} (\frac{3}{2}nT\bm{v})=\frac{3}{2}T\bm{\nabla \cdot}(n\bm{v})+\frac{3}{2}n\bm{v \cdot \nabla}T

Then
3 2 n T t 3 2 T ( n v ) = q 3 2 T ( n v ) 3 2 n v T ( P ) v \frac{3}{2}n\frac{\partial T}{\partial t}-\frac{3}{2}T\bm{\nabla \cdot}(n \bm{v}) = -\bm{\nabla \cdot q} - \frac{3}{2}T\bm{\nabla \cdot}(n\bm{v}) - \frac{3}{2}n\bm{v \cdot \nabla}T - (\bm{{\rm P}\cdot \nabla})\bm{\cdot v}

3 2 n T t = q 3 2 n v T ( P ) v \frac{3}{2}n\frac{\partial T}{\partial t} = -\bm{\nabla \cdot q} - \frac{3}{2}n\bm{v \cdot \nabla}T - (\bm{{\rm P}\cdot \nabla})\bm{\cdot v}

Then
3 2 n ( T t + v T ) = q ( P ) v \frac{3}{2}n(\frac{\partial T}{\partial t} + \bm{v \cdot \nabla}T) = -\bm{\nabla \cdot q} - (\bm{{\rm P}\cdot \nabla})\bm{\cdot v}

Let
P = P p I + p I = P + p I \bm{{\rm P=P}}-p\bm{{\rm I}}+p\bm{{\rm I}} = \bm{{\rm P'}}+p\bm{{\rm I}}

Where I \bm{\rm I} is the unit tensor, and p p is the scalar pressure.

Then
3 2 n ( T t + v T ) = q ( P ) v p ( I ) v \frac{3}{2}n(\frac{\partial T}{\partial t} + \bm{v \cdot \nabla}T) = -\bm{\nabla \cdot q} - (\bm{{\rm P'}\cdot \nabla})\bm{\cdot v} - p(\bm{{\rm I}\cdot \nabla})\bm{\cdot v}

Finally, the energy density conservation equation is
3 2 n ( T t + v T ) + p v = q ( P ) v \frac{3}{2}n (\frac{\partial T}{\partial t}+\bm{v} \bm{\cdot \nabla}T)+p\bm{\nabla \cdot v}=-\bm{\nabla \cdot q}-(\bm{{\rm P'} \cdot \nabla})\bm{\cdot v}

发布了42 篇原创文章 · 获赞 5 · 访问量 2968

猜你喜欢

转载自blog.csdn.net/Function_RY/article/details/102908870