chromium之scoped_ptr chromium之ref_counted

看看怎么使用

// Scopers help you manage ownership of a pointer, helping you easily manage the
// a pointer within a scope, and automatically destroying the pointer at the
// end of a scope.  There are two main classes you will use, which coorespond
// to the operators new/delete and new[]/delete[].
//
// Example usage (scoped_ptr):
//   {
//     scoped_ptr<Foo> foo(new Foo("wee"));
//   }  // foo goes out of scope, releasing the pointer with it.
//
//   {
//     scoped_ptr<Foo> foo;          // No pointer managed.
//     foo.reset(new Foo("wee"));    // Now a pointer is managed.
//     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
//     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
//     foo->Method();                // Foo::Method() called.
//     foo.get()->Method();          // Foo::Method() called.
//     SomeFunc(foo.release());      // SomeFunc takes owernship, foo no longer
//                                   // manages a pointer.
//     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
//     foo.reset();                  // Foo("wee4") destroyed, foo no longer
//                                   // manages a pointer.
//   }  // foo wasn't managing a pointer, so nothing was destroyed.
//
// Example usage (scoped_array):
//   {
//     scoped_array<Foo> foo(new Foo[100]);
//     foo.get()->Method();  // Foo::Method on the 0th element.
//     foo[10].Method();     // Foo::Method on the 10th element.
//   }

scoped_ptr顾名思义,就是离开作用域,就会自动析构。


这跟上一节的chromium之ref_counted什么区别。

class MyFoo : public base::RefCounted<MyFoo> {
};

MyFoo *foo = new MyFoo;
foo->AddRef();

foo->AddRef();
 
 
foo->Release(); 
foo->Release(); 
// foo has been delete

区别在于RefCounted必须调用Release才会自动析构,而且可以有多次引用,而scoped_ptr离开作用域就会自动析构


// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
// automatically deletes the pointer it holds (if any).
// That is, scoped_ptr<T> owns the T object that it points to.
// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
// Also like T*, scoped_ptr<T> is thread-compatible, and once you
// dereference it, you get the threadsafety guarantees of T.
//
// The size of a scoped_ptr is small:
// sizeof(scoped_ptr<C>) == sizeof(C*)
template <class C>
class scoped_ptr {
 public:

  // The element type
  typedef C element_type;

  // Constructor.  Defaults to intializing with NULL.
  // There is no way to create an uninitialized scoped_ptr.
  // The input parameter must be allocated with new.
  explicit scoped_ptr(C* p = NULL) : ptr_(p) { }

  // Destructor.  If there is a C object, delete it.
  // We don't need to test ptr_ == NULL because C++ does that for us.
  ~scoped_ptr() {
    enum { type_must_be_complete = sizeof(C) };
    delete ptr_;
  }

  // Reset.  Deletes the current owned object, if any.
  // Then takes ownership of a new object, if given.
  // this->reset(this->get()) works.
  void reset(C* p = NULL) {
    if (p != ptr_) {
      enum { type_must_be_complete = sizeof(C) };
      delete ptr_;
      ptr_ = p;
    }
  }

  // Accessors to get the owned object.
  // operator* and operator-> will assert() if there is no current object.
  C& operator*() const {
    assert(ptr_ != NULL);
    return *ptr_;
  }
  C* operator->() const  {
    assert(ptr_ != NULL);
    return ptr_;
  }
  C* get() const { return ptr_; }

  // Comparison operators.
  // These return whether two scoped_ptr refer to the same object, not just to
  // two different but equal objects.
  bool operator==(C* p) const { return ptr_ == p; }
  bool operator!=(C* p) const { return ptr_ != p; }

  // Swap two scoped pointers.
  void swap(scoped_ptr& p2) {
    C* tmp = ptr_;
    ptr_ = p2.ptr_;
    p2.ptr_ = tmp;
  }

  // Release a pointer.
  // The return value is the current pointer held by this object.
  // If this object holds a NULL pointer, the return value is NULL.
  // After this operation, this object will hold a NULL pointer,
  // and will not own the object any more.
  C* release() {
    C* retVal = ptr_;
    ptr_ = NULL;
    return retVal;
  }

 private:
  C* ptr_;

  // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't
  // make sense, and if C2 == C, it still doesn't make sense because you should
  // never have the same object owned by two different scoped_ptrs.
  template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
  template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;

  // Disallow evil constructors
  scoped_ptr(const scoped_ptr&);
  void operator=(const scoped_ptr&);
};

这里有一个方法release(),可以释放指针

Foo *ptr = nullptr;
{
    scoped_ptr<Foo> foo(new Foo);
    ptr = foo.release(); // ptr get obj;
}
assert(ptr != nullptr);

猜你喜欢

转载自www.cnblogs.com/ckelsel/p/9048474.html