消息队列的流派和Actor模型

什么是 MQ

Message Queue(MQ),消息队列中间件。很多人都说:MQ 通过将消息的发送和接收分离来实现应用程序的异步和解偶,这个给人的直觉是——MQ 是异步的,用来解耦的,但是这个只是 MQ 的效果而不是目的。MQ 真正的目的是为了通讯,屏蔽底层复杂的通讯协议,定义了一套应用层的、更加简单的通讯协议。一个分布式系统中两个模块之间通讯要么是 HTTP,要么是自己开发的 TCP,但是这两种协议其实都是原始的协议。HTTP 协议很难实现两端通讯——模块 A 可以调用 B,B 也可以主动调用 A,如果要做到这个两端都要背上 WebServer,而且还不支持长连接(HTTP 2.0 的库根本找不到)。TCP 就更加原始了,粘包、心跳、私有的协议,想一想头皮就发麻。MQ 所要做的就是在这些协议之上构建一个简单的“协议”——生产者/消费者模型。MQ 带给我的“协议”不是具体的通讯协议,而是更高层次通讯模型。它定义了两个对象——发送数据的叫生产者;接收数据的叫消费者, 提供一个 SDK 让我们可以定义自己的生产者和消费者实现消息通讯而无视底层通讯协议

有 Broker 的 MQ

这个流派通常有一台服务器作为 Broker,所有的消息都通过它中转。生产者把消息发送给它就结束自己的任务了,Broker 则把消息主动推送给消费者(或者消费者主动轮询)

重 Topic

kafka、JMS(ActiveMQ)就属于这个流派,生产者会发送 key 和数据到 Broker,由 Broker 比较 key 之后决定给哪个消费者。这种模式是我们最常见的模式,是我们对 MQ 最多的印象。在这种模式下一个 topic 往往是一个比较大的概念,甚至一个系统中就可能只有一个 topic,topic 某种意义上就是 queue,生产者发送 key 相当于说:“hi,把数据放到 key 的队列中”
在这里插入图片描述
如上图所示,Broker 定义了三个队列,key1,key2,key3,生产者发送数据的时候会发送 key1 和 data,Broker 在推送数据的时候则推送 data(也可能把 key 带上)。

虽然架构一样但是 kafka 的性能要比 jms 的性能不知道高到多少倍,所以基本这种类型的 MQ 只有 kafka 一种备选方案。如果你需要一条暴力的数据流(在乎性能而非灵活性)那么 kafka 是最好的选择(传输效率快,但是容易丢包)

轻 Topic

这种的代表是 RabbitMQ(或者说是 AMQP)。生产者发送 key 和数据,消费者定义订阅的队列,Broker 收到数据之后会通过一定的逻辑计算出 key 对应的队列,然后把数据交给队列
在这里插入图片描述
这种模式下解耦了 key 和 queue,在这种架构中 queue 是非常轻量级的(在 RabbitMQ 中它的上限取决于你的内存),消费者关心的只是自己的 queue;生产者不必关心数据最终给谁只要指定 key 就行了,中间的那层映射在 AMQP 中叫 exchange(交换机)。

AMQP 中有四种 exchange

  • Direct exchange:key 就等于 queue
  • Fanout exchange:无视 key,给所有的 queue 都来一份
  • Topic exchange:key 可以用“宽字符”模糊匹配 queue
  • Headers exchange:无视 key,通过查看消息的头部元数据来决定发给那个 queue(AMQP 头部元数据非常丰富而且可以自定义)

这种结构的架构给通讯带来了很大的灵活性,我们能想到的通讯方式都可以用这四种 exchange 表达出来。如果你需要一个企业数据总线(在乎灵活性)那么 RabbitMQ 绝对的值得一用

无 Broker 的 MQ

无 Broker 的 MQ 的代表是 ZeroMQ。该作者非常睿智,他非常敏锐的意识到——MQ 是更高级的 Socket,它是解决通讯问题的。所以 ZeroMQ 被设计成了一个“库”而不是一个中间件,这种实现也可以达到——没有 Broker 的目的
在这里插入图片描述
节点之间通讯的消息都是发送到彼此的队列中,每个节点都既是生产者又是消费者。ZeroMQ 做的事情就是封装出一套类似于 Socket 的 API 可以完成发送数据,读取数据

ZeroMQ 其实就是一个跨语言的、重量级的 Actor 模型邮箱库。你可以把自己的程序想象成一个 Actor,ZeroMQ 就是提供邮箱功能的库;ZeroMQ 可以实现同一台机器的 RPC 通讯也可以实现不同机器的 TCP、UDP 通讯,如果你需要一个强大的、灵活、野蛮的通讯能力,别犹豫 ZeroMQ

什么是 Actor 模型

Actor 模式是一个解决分布式计算的数学模型,其中 Actor 是基础,它能回应接收到消息,能够自我决策,创建更多的 Actor,发送更多的消息,决定如何回应下一个接收到的消息。Actor 认为一切皆是 Actor,类似于面向对象认为一切皆 Object 一样。OO 的执行是顺序的,Actor 模型内在设计就是并行的

Actor 是异步的

Actor 是计算实体,它回复接收到的消息,能够并行的:

  • 发生有限的消息给其他 Actor
  • 创建有限数目的新 Actor
  • 指定一个消息到达时的行为

这些操作并没有顺序要求,它们能够并行地实施。由于没有对消息的时序做规定,Actor 模式是一种异步模型,发送到 Actor 不等待消息被接收而继续执行。Actor 之间不共享状态,如果想获取其他 Actor 的状态,只能通过消息请求的方式

Actor 在消息内部指定接收消息的 Actor 地址。Actor 可以用自己的地址发送消息,相当于自己接收到自己发送的消息,可以驱动自己的状态

所谓真正的 Actor 模型

Actor 可以被认为是在用户空间实现的并发实体,所以它应该是应用级别的线程。如果认同这个观点那么 Actor 要满足的要求 = 操作系统对进程/线程 提出的要求一样

内存结构

每个并发实体都是要有一个固定的数据结构,必须有一个容器可以保存当前所有的并发实体。这一点基本上很容易满足,Akka 中 Actor 就是一个类,所以它的结构就是这个类的数据结构,大小也就是这个类的大小。Akka 中的 Dispatcher 保存有所有 Actor 的列表

并发原语

操作系统的是通过临界区,锁来定义多线程共享数据模型的。在 Actor 中是通过消息来共享数据的。基于消息传递要求“数据只读”,你发送出去的数据再修改肯定就不对了。但是这一点在 Java 里面无论如何都是做不到的,你不修改变量的引用但是还可以修改变量里面的值,调用对象的方法。

调度

这是最重要的:没有调度,并发实体根本不能称之为并发实体。操作系统中 CPU 是由内核管理的,调度算法是基于时间片来调任务的,内核随时可以剥夺一个任务的 CPU 使用权这就是“抢占”。这一点非常重要,没有这个功能就意味着调度是不公平的。一个任务耗费大量 CPU 会把另个一任务给饿死。但是在用户空间(应用层)很难实现这一点,毕竟 CPU 是不受应用程序的控制的,没有把办法剥夺。抢占看似可有可无,但是没有它就没有“公平调度”,也就谈不上并发。(有任务撑死,有任务饿死)

所谓“公平调度”

比如写两个 Actor,使用无限循环输出字符串(while(true))会疯狂的吃 CPU,如果是可抢占的公平调度,则 actor1 和 actor2 应该是比较有规律的交替(大家得到的 CPU 时间差不多)

Java 中的 Akka

test1
test1
test1
...
test2
test2
test2
...
test1
...

ErLang

test1
test2
test1
test2
test1
test2
test1
test2
...

ErLang 非常均匀的任务切换,实现了“可抢占的公平”

发布了69 篇原创文章 · 获赞 8 · 访问量 1万+

猜你喜欢

转载自blog.csdn.net/qq_40369435/article/details/91875799