以太坊源码分析(49)p2p-table.go源码分析

table.go主要实现了p2p的Kademlia协议。

### Kademlia协议简介(建议阅读references里面的pdf文档)
Kademlia协议(以下简称Kad) 是美国纽约大学的PetarP. Maymounkov和David Mazieres.
在2002年发布的一项研究结果《Kademlia: A peerto -peer information system based on
the XOR metric》。
简单的说, Kad 是一种分布式哈希表( DHT) 技术, 不过和其他 DHT 实现技术比较,如
Chord、 CAN、 Pastry 等, Kad 通过独特的以异或算法( XOR)为距离度量基础,建立了一种
全新的 DHT 拓扑结构,相比于其他算法,大大提高了路由查询速度。


### table的结构和字段

    const (
        alpha = 3 // Kademlia concurrency factor
        bucketSize = 16 // Kademlia bucket size
        hashBits = len(common.Hash{}) * 8
        nBuckets = hashBits + 1 // Number of buckets
    
        maxBondingPingPongs = 16
        maxFindnodeFailures = 5
    
        autoRefreshInterval = 1 * time.Hour
        seedCount = 30
        seedMaxAge = 5 * 24 * time.Hour
    )
    
    type Table struct {
        mutex sync.Mutex // protects buckets, their content, and nursery
        buckets [nBuckets]*bucket // index of known nodes by distance
        nursery []*Node // bootstrap nodes
        db *nodeDB // database of known nodes
    
        refreshReq chan chan struct{}
        closeReq chan struct{}
        closed chan struct{}
    
        bondmu sync.Mutex
        bonding map[NodeID]*bondproc
        bondslots chan struct{} // limits total number of active bonding processes
    
        nodeAddedHook func(*Node) // for testing
    
        net transport
        self *Node // metadata of the local node
    }


### 初始化


    func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr, nodeDBPath string) (*Table, error) {
        // If no node database was given, use an in-memory one
        //这个在之前的database.go里面有介绍。 打开leveldb。如果path为空。那么打开一个基于内存的db
        db, err := newNodeDB(nodeDBPath, Version, ourID)
        if err != nil {
            return nil, err
        }
        tab := &Table{
            net: t,
            db: db,
            self: NewNode(ourID, ourAddr.IP, uint16(ourAddr.Port), uint16(ourAddr.Port)),
            bonding: make(map[NodeID]*bondproc),
            bondslots: make(chan struct{}, maxBondingPingPongs),
            refreshReq: make(chan chan struct{}),
            closeReq: make(chan struct{}),
            closed: make(chan struct{}),
        }
        for i := 0; i < cap(tab.bondslots); i++ {
            tab.bondslots <- struct{}{}
        }
        for i := range tab.buckets {
            tab.buckets[i] = new(bucket)
        }
        go tab.refreshLoop()
        return tab, nil
    }

上面的初始化启动了一个goroutine refreshLoop(),这个函数主要完成以下的工作。

1. 每一个小时进行一次刷新工作(autoRefreshInterval)
2. 如果接收到refreshReq请求。那么进行刷新工作。
3. 如果接收到关闭消息。那么进行关闭。

所以函数主要的工作就是启动刷新工作。doRefresh


    // refreshLoop schedules doRefresh runs and coordinates shutdown.
    func (tab *Table) refreshLoop() {
        var (
            timer = time.NewTicker(autoRefreshInterval)
            waiting []chan struct{} // accumulates waiting callers while doRefresh runs
            done chan struct{} // where doRefresh reports completion
        )
    loop:
        for {
            select {
            case <-timer.C:
                if done == nil {
                    done = make(chan struct{})
                    go tab.doRefresh(done)
                }
            case req := <-tab.refreshReq:
                waiting = append(waiting, req)
                if done == nil {
                    done = make(chan struct{})
                    go tab.doRefresh(done)
                }
            case <-done:
                for _, ch := range waiting {
                    close(ch)
                }
                waiting = nil
                done = nil
            case <-tab.closeReq:
                break loop
            }
        }
    
        if tab.net != nil {
            tab.net.close()
        }
        if done != nil {
            <-done
        }
        for _, ch := range waiting {
            close(ch)
        }
        tab.db.close()
        close(tab.closed)
    }


doRefresh函数

    // doRefresh performs a lookup for a random target to keep buckets
    // full. seed nodes are inserted if the table is empty (initial
    // bootstrap or discarded faulty peers).
    // doRefresh 随机查找一个目标,以便保持buckets是满的。如果table是空的,那么种子节点会插入。 (比如最开始的启动或者是删除错误的节点之后)
    func (tab *Table) doRefresh(done chan struct{}) {
        defer close(done)
    
        // The Kademlia paper specifies that the bucket refresh should
        // perform a lookup in the least recently used bucket. We cannot
        // adhere to this because the findnode target is a 512bit value
        // (not hash-sized) and it is not easily possible to generate a
        // sha3 preimage that falls into a chosen bucket.
        // We perform a lookup with a random target instead.
        //这里暂时没看懂
        var target NodeID
        rand.Read(target[:])
        result := tab.lookup(target, false) //lookup是查找距离target最近的k个节点
        if len(result) > 0 { //如果结果不为0 说明表不是空的,那么直接返回。
            return
        }
    
        // The table is empty. Load nodes from the database and insert
        // them. This should yield a few previously seen nodes that are
        // (hopefully) still alive.
        //querySeeds函数在database.go章节有介绍,从数据库里面随机的查找可用的种子节点。
        //在最开始启动的时候数据库是空白的。也就是最开始的时候这个seeds返回的是空的。
        seeds := tab.db.querySeeds(seedCount, seedMaxAge)
        //调用bondall函数。会尝试联系这些节点,并插入到表中。
        //tab.nursery是在命令行中指定的种子节点。
        //最开始启动的时候。 tab.nursery的值是内置在代码里面的。 这里是有值的。
        //C:\GOPATH\src\github.com\ethereum\go-ethereum\mobile\params.go
        //这里面写死了值。 这个值是通过SetFallbackNodes方法写入的。 这个方法后续会分析。
        //这里会进行双向的pingpong交流。 然后把结果存储在数据库。
        seeds = tab.bondall(append(seeds, tab.nursery...))
    
        if len(seeds) == 0 { //没有种子节点被发现, 可能需要等待下一次刷新。
            log.Debug("No discv4 seed nodes found")
        }
        for _, n := range seeds {
            age := log.Lazy{Fn: func() time.Duration { return time.Since(tab.db.lastPong(n.ID)) }}
            log.Trace("Found seed node in database", "id", n.ID, "addr", n.addr(), "age", age)
        }
        tab.mutex.Lock()
        //这个方法把所有经过bond的seed加入到bucket(前提是bucket未满)
        tab.stuff(seeds)
        tab.mutex.Unlock()
    
        // Finally, do a self lookup to fill up the buckets.
        tab.lookup(tab.self.ID, false) // 有了种子节点。那么查找自己来填充buckets。
    }

bondall方法,这个方法就是多线程的调用bond方法。

    // bondall bonds with all given nodes concurrently and returns
    // those nodes for which bonding has probably succeeded.
    func (tab *Table) bondall(nodes []*Node) (result []*Node) {
        rc := make(chan *Node, len(nodes))
        for i := range nodes {
            go func(n *Node) {
                nn, _ := tab.bond(false, n.ID, n.addr(), uint16(n.TCP))
                rc <- nn
            }(nodes[i])
        }
        for range nodes {
            if n := <-rc; n != nil {
                result = append(result, n)
            }
        }
        return result
    }

bond方法。记得在udp.go中。当我们收到一个ping方法的时候,也有可能会调用这个方法


    // bond ensures the local node has a bond with the given remote node.
    // It also attempts to insert the node into the table if bonding succeeds.
    // The caller must not hold tab.mutex.
    // bond确保本地节点与给定的远程节点具有绑定。(远端的ID和远端的IP)。
    // 如果绑定成功,它也会尝试将节点插入表中。调用者必须持有tab.mutex锁
    // A bond is must be established before sending findnode requests.
    // Both sides must have completed a ping/pong exchange for a bond to
    // exist. The total number of active bonding processes is limited in
    // order to restrain network use.
    // 发送findnode请求之前必须建立一个绑定。  双方为了完成一个bond必须完成双向的ping/pong过程。
    // 为了节约网路资源。 同时存在的bonding处理流程的总数量是受限的。  
    // bond is meant to operate idempotently in that bonding with a remote
    // node which still remembers a previously established bond will work.
    // The remote node will simply not send a ping back, causing waitping
    // to time out.
    // bond 是幂等的操作,跟一个任然记得之前的bond的远程节点进行bond也可以完成。 远程节点会简单的不会发送ping。 等待waitping超时。
    // If pinged is true, the remote node has just pinged us and one half
    // of the process can be skipped.
    //  如果pinged是true。 那么远端节点已经给我们发送了ping消息。这样一半的流程可以跳过。
    func (tab *Table) bond(pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) (*Node, error) {
        if id == tab.self.ID {
            return nil, errors.New("is self")
        }
        // Retrieve a previously known node and any recent findnode failures
        node, fails := tab.db.node(id), 0
        if node != nil {
            fails = tab.db.findFails(id)
        }
        // If the node is unknown (non-bonded) or failed (remotely unknown), bond from scratch
        var result error
        age := time.Since(tab.db.lastPong(id))
        if node == nil || fails > 0 || age > nodeDBNodeExpiration {
            //如果数据库没有这个节点。 或者错误数量大于0或者节点超时。
            log.Trace("Starting bonding ping/pong", "id", id, "known", node != nil, "failcount", fails, "age", age)
    
            tab.bondmu.Lock()
            w := tab.bonding[id]
            if w != nil {
                // Wait for an existing bonding process to complete.
                tab.bondmu.Unlock()
                <-w.done
            } else {
                // Register a new bonding process.
                w = &bondproc{done: make(chan struct{})}
                tab.bonding[id] = w
                tab.bondmu.Unlock()
                // Do the ping/pong. The result goes into w.
                tab.pingpong(w, pinged, id, addr, tcpPort)
                // Unregister the process after it's done.
                tab.bondmu.Lock()
                delete(tab.bonding, id)
                tab.bondmu.Unlock()
            }
            // Retrieve the bonding results
            result = w.err
            if result == nil {
                node = w.n
            }
        }
        if node != nil {
            // Add the node to the table even if the bonding ping/pong
            // fails. It will be relaced quickly if it continues to be
            // unresponsive.
            //这个方法比较重要。 如果对应的bucket有空间,会直接插入buckets。如果buckets满了。 会用ping操作来测试buckets中的节点试图腾出空间。
            tab.add(node)
            tab.db.updateFindFails(id, 0)
        }
        return node, result
    }

pingpong方法

    func (tab *Table) pingpong(w *bondproc, pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) {
        // Request a bonding slot to limit network usage
        <-tab.bondslots
        defer func() { tab.bondslots <- struct{}{} }()
    
        // Ping the remote side and wait for a pong.
        // Ping远程节点。并等待一个pong消息
        if w.err = tab.ping(id, addr); w.err != nil {
            close(w.done)
            return
        }
        //这个在udp收到一个ping消息的时候被设置为真。这个时候我们已经收到对方的ping消息了。
        //那么我们就不同等待ping消息了。 否则需要等待对方发送过来的ping消息(我们主动发起ping消息)。
        if !pinged {
            // Give the remote node a chance to ping us before we start
            // sending findnode requests. If they still remember us,
            // waitping will simply time out.
            tab.net.waitping(id)
        }
        // Bonding succeeded, update the node database.
        // 完成bond过程。 把节点插入数据库。 数据库操作在这里完成。 bucket的操作在tab.add里面完成。 buckets是内存的操作。 数据库是持久化的seeds节点。用来加速启动过程的。
        w.n = NewNode(id, addr.IP, uint16(addr.Port), tcpPort)
        tab.db.updateNode(w.n)
        close(w.done)
    }

tab.add方法

    // add attempts to add the given node its corresponding bucket. If the
    // bucket has space available, adding the node succeeds immediately.
    // Otherwise, the node is added if the least recently active node in
    // the bucket does not respond to a ping packet.
    // add试图把给定的节点插入对应的bucket。 如果bucket有空间,那么直接插入。 否则,如果bucket中最近活动的节点没有响应ping操作,那么我们就使用这个节点替换它。
    // The caller must not hold tab.mutex.
    func (tab *Table) add(new *Node) {
        b := tab.buckets[logdist(tab.self.sha, new.sha)]
        tab.mutex.Lock()
        defer tab.mutex.Unlock()
        if b.bump(new) { //如果节点存在。那么更新它的值。然后退出。
            return
        }
        var oldest *Node
        if len(b.entries) == bucketSize {
            oldest = b.entries[bucketSize-1]
            if oldest.contested {
                // The node is already being replaced, don't attempt
                // to replace it.
                // 如果别的goroutine正在对这个节点进行测试。 那么取消替换, 直接退出。
                // 因为ping的时间比较长。所以这段时间是没有加锁的。 用了contested这个状态来标识这种情况。
                return
            }
            oldest.contested = true
            // Let go of the mutex so other goroutines can access
            // the table while we ping the least recently active node.
            tab.mutex.Unlock()
            err := tab.ping(oldest.ID, oldest.addr())
            tab.mutex.Lock()
            oldest.contested = false
            if err == nil {
                // The node responded, don't replace it.
                return
            }
        }
        added := b.replace(new, oldest)
        if added && tab.nodeAddedHook != nil {
            tab.nodeAddedHook(new)
        }
    }



stuff方法比较简单。 找到对应节点应该插入的bucket。 如果这个bucket没有满,那么就插入这个bucket。否则什么也不做。 需要说一下的是logdist()这个方法。这个方法对两个值进行按照位置异或,然后返回最高位的下标。 比如 logdist(101,010) = 3 logdist(100, 100) = 0 logdist(100,110) = 2

    // stuff adds nodes the table to the end of their corresponding bucket
    // if the bucket is not full. The caller must hold tab.mutex.
    func (tab *Table) stuff(nodes []*Node) {
    outer:
        for _, n := range nodes {
            if n.ID == tab.self.ID {
                continue // don't add self
            }
            bucket := tab.buckets[logdist(tab.self.sha, n.sha)]
            for i := range bucket.entries {
                if bucket.entries[i].ID == n.ID {
                    continue outer // already in bucket
                }
            }
            if len(bucket.entries) < bucketSize {
                bucket.entries = append(bucket.entries, n)
                if tab.nodeAddedHook != nil {
                    tab.nodeAddedHook(n)
                }
            }
        }
    }


在看看之前的Lookup函数。 这个函数用来查询一个指定节点的信息。 这个函数首先从本地拿到距离这个节点最近的所有16个节点。 然后给所有的节点发送findnode的请求。 然后对返回的界定进行bondall处理。 然后返回所有的节点。



    func (tab *Table) lookup(targetID NodeID, refreshIfEmpty bool) []*Node {
        var (
            target = crypto.Keccak256Hash(targetID[:])
            asked = make(map[NodeID]bool)
            seen = make(map[NodeID]bool)
            reply = make(chan []*Node, alpha)
            pendingQueries = 0
            result *nodesByDistance
        )
        // don't query further if we hit ourself.
        // unlikely to happen often in practice.
        asked[tab.self.ID] = true
        不会询问我们自己
        for {
            tab.mutex.Lock()
            // generate initial result set
            result = tab.closest(target, bucketSize)
            //求取和target最近的16个节点
            tab.mutex.Unlock()
            if len(result.entries) > 0 || !refreshIfEmpty {
                break
            }
            // The result set is empty, all nodes were dropped, refresh.
            // We actually wait for the refresh to complete here. The very
            // first query will hit this case and run the bootstrapping
            // logic.
            <-tab.refresh()
            refreshIfEmpty = false
        }
    
        for {
            // ask the alpha closest nodes that we haven't asked yet
            // 这里会并发的查询,每次3个goroutine并发(通过pendingQueries参数进行控制)
            // 每次迭代会查询result中和target距离最近的三个节点。
            for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
                n := result.entries[i]
                if !asked[n.ID] { //如果没有查询过 //因为这个result.entries会被重复循环很多次。 所以用这个变量控制那些已经处理过了。
                    asked[n.ID] = true
                    pendingQueries++
                    go func() {
                        // Find potential neighbors to bond with
                        r, err := tab.net.findnode(n.ID, n.addr(), targetID)
                        if err != nil {
                            // Bump the failure counter to detect and evacuate non-bonded entries
                            fails := tab.db.findFails(n.ID) + 1
                            tab.db.updateFindFails(n.ID, fails)
                            log.Trace("Bumping findnode failure counter", "id", n.ID, "failcount", fails)
    
                            if fails >= maxFindnodeFailures {
                                log.Trace("Too many findnode failures, dropping", "id", n.ID, "failcount", fails)
                                tab.delete(n)
                            }
                        }
                        reply <- tab.bondall(r)
                    }()
                }
            }
            if pendingQueries == 0 {
                // we have asked all closest nodes, stop the search
                break
            }
            // wait for the next reply
            for _, n := range <-reply {
                if n != nil && !seen[n.ID] { //因为不同的远方节点可能返回相同的节点。所有用seen[]来做排重。
                    seen[n.ID] = true
                    //这个地方需要注意的是, 查找出来的结果又会加入result这个队列。也就是说这是一个循环查找的过程, 只要result里面不断加入新的节点。这个循环就不会终止。
                    result.push(n, bucketSize)
                }
            }
            pendingQueries--
        }
        return result.entries
    }
    
    // closest returns the n nodes in the table that are closest to the
    // given id. The caller must hold tab.mutex.
    func (tab *Table) closest(target common.Hash, nresults int) *nodesByDistance {
        // This is a very wasteful way to find the closest nodes but
        // obviously correct. I believe that tree-based buckets would make
        // this easier to implement efficiently.
        close := &nodesByDistance{target: target}
        for _, b := range tab.buckets {
            for _, n := range b.entries {
                close.push(n, nresults)
            }
        }
        return close
    }

result.push方法,这个方法会根据 所有的节点对于target的距离进行排序。 按照从近到远的方式决定新节点的插入顺序。(队列中最大会包含16个元素)。 这样会导致队列里面的元素和target的距离越来越近。距离相对远的会被踢出队列。
    
    // nodesByDistance is a list of nodes, ordered by
    // distance to target.
    type nodesByDistance struct {
        entries []*Node
        target common.Hash
    }
    
    // push adds the given node to the list, keeping the total size below maxElems.
    func (h *nodesByDistance) push(n *Node, maxElems int) {
        ix := sort.Search(len(h.entries), func(i int) bool {
            return distcmp(h.target, h.entries[i].sha, n.sha) > 0
        })
        if len(h.entries) < maxElems {
            h.entries = append(h.entries, n)
        }
        if ix == len(h.entries) {
            // farther away than all nodes we already have.
            // if there was room for it, the node is now the last element.
        } else {
            // slide existing entries down to make room
            // this will overwrite the entry we just appended.
            copy(h.entries[ix+1:], h.entries[ix:])
            h.entries[ix] = n
        }
    }


### table.go 导出的一些方法
Resolve方法和Lookup方法

    // Resolve searches for a specific node with the given ID.
    // It returns nil if the node could not be found.
    //Resolve方法用来获取一个指定ID的节点。 如果节点在本地。那么返回本地节点。 否则执行
    //Lookup在网络上查询一次。 如果查询到节点。那么返回。否则返回nil
    func (tab *Table) Resolve(targetID NodeID) *Node {
        // If the node is present in the local table, no
        // network interaction is required.
        hash := crypto.Keccak256Hash(targetID[:])
        tab.mutex.Lock()
        cl := tab.closest(hash, 1)
        tab.mutex.Unlock()
        if len(cl.entries) > 0 && cl.entries[0].ID == targetID {
            return cl.entries[0]
        }
        // Otherwise, do a network lookup.
        result := tab.Lookup(targetID)
        for _, n := range result {
            if n.ID == targetID {
                return n
            }
        }
        return nil
    }
    
    // Lookup performs a network search for nodes close
    // to the given target. It approaches the target by querying
    // nodes that are closer to it on each iteration.
    // The given target does not need to be an actual node
    // identifier.
    func (tab *Table) Lookup(targetID NodeID) []*Node {
        return tab.lookup(targetID, true)
    }

SetFallbackNodes方法,这个方法设置初始化的联系节点。 在table是空而且数据库里面也没有已知的节点,这些节点可以帮助连接上网络,

    // SetFallbackNodes sets the initial points of contact. These nodes
    // are used to connect to the network if the table is empty and there
    // are no known nodes in the database.
    func (tab *Table) SetFallbackNodes(nodes []*Node) error {
        for _, n := range nodes {
            if err := n.validateComplete(); err != nil {
                return fmt.Errorf("bad bootstrap/fallback node %q (%v)", n, err)
            }
        }
        tab.mutex.Lock()
        tab.nursery = make([]*Node, 0, len(nodes))
        for _, n := range nodes {
            cpy := *n
            // Recompute cpy.sha because the node might not have been
            // created by NewNode or ParseNode.
            cpy.sha = crypto.Keccak256Hash(n.ID[:])
            tab.nursery = append(tab.nursery, &cpy)
        }
        tab.mutex.Unlock()
        tab.refresh()
        return nil
    }


### 总结

这样, p2p网络的Kademlia协议就完结了。 基本上是按照论文进行实现。 udp进行网络通信。数据库存储链接过的节点。 table实现了Kademlia的核心。 根据异或距离来进行节点的查找。 节点的发现和更新等流程。




网址:http://www.qukuailianxueyuan.io/



欲领取造币技术与全套虚拟机资料

区块链技术交流QQ群:756146052  备注:CSDN

尹成学院微信:备注:CSDN



猜你喜欢

转载自blog.csdn.net/yincheng01/article/details/80305667