从原子类理解Java内存模型,AtomicInteger的incrementAndGet方法源码介绍

众所周知,i++分为三步:

1. 读取i的值

2. 计算i+1

3. 将计算出i+1赋给i

可以使用锁来保持操作的原子性,用volatile保持值的可见性和操作顺序性;

如果仅仅是计算操作,我们自然就想到了java.util.concurrent.atomic包下的原子类,则不必考虑锁的升级、获取、释放等消耗,也不必考虑锁的粒度、种类、可重入性等;

由于atomic由于底层是Unsafe对象的CAS操作,缺点也很明显:需要死循环时间开销,只能是单个变量CASABA问题(通过AtomicStampedReference解决——增加了stamp类似于version标识);

下面来看下AtomicInteger的incrementAndGet方法源码:

public final int incrementAndGet() {
        return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
    }

incrementAndGet,先increment,再get,所以获取的是increment后的值,而unsafe.getAndAddInt先get,所以这里需要"+1";

那这里的valueOffset又是什么呢?

  private static final long valueOffset;

    static {
        try {
            valueOffset = unsafe.objectFieldOffset
                (AtomicInteger.class.getDeclaredField("value"));
        } catch (Exception ex) { throw new Error(ex); }
    }

AtomicInteger的静态属性valueOffset属性value的偏移量,在类加载的时候,通过AtomicInteger的Field——"value"初始化,后续通过当前的AtomicInteger实例和该valueOffset obtain该实例value属性的值;

unsafe.getAndAddInt IDEA反编译后源码如下:

public final int getAndAddInt(Object var1, long var2, int var4) {
        int var5;
        do {
            var5 = this.getIntVolatile(var1, var2);
        } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));

        return var5;
    }

unsafe.getAndAddInt具体实现是不停的compare主存中取到的值var5和当前的线程的工作内存中的值(通过对象var1和偏移量var2获得),直到两者equal则更新为新值var5+var4(delta) ,从这里我们也体会到了Java内存模型

getIntVolatile(主存)和compareAndSwapInt都是sun.misc.Unsafe的native方法。

下面是一个非常简单小例子,分别是非线程安全的i++,锁同步以及Atomic Class:

public class Counter {
    @Getter
    private volatile int i = 0;

    @Getter
    private volatile AtomicInteger atomicInteger = new AtomicInteger(0);

    public void increment(){
        i++;
        // 1. 读取i的值
        // 2. 计算i+1
        // 3. 把i+1的值赋给i
    }

    public void incrementSync(){
        synchronized(this) {
            i++;
            // 1. 读取i的值
            // 2. 计算i+1
            // 3. 把i+1的值赋给i
        }
    }

    public void incrementAtomic(){
        // 先increment再返回
        atomicInteger.incrementAndGet();
    }
}

测试类:

public class AtomicityTest {
    private Counter counter;
    /**
     * 每个线程打印的次数
     */
    private int count;

    @Before
    public void init(){
        counter = new Counter();
        count = 10000;
    }

    /**
     * 非线程安全的i++
     */
    @Test
    public void increment() throws InterruptedException {

        Thread t1 = new Thread(() -> {
            for (int i = 0; i < count; i++) {
                counter.increment();
            }
        });

        Thread t2 = new Thread(() -> {
            for (int i = 0; i < count; i++) {
                counter.increment();
            }
        });

        t1.start();
        t2.start();

        // 单元测试必须新起的线程要在主线程里join,否则主线程运行完毕,新起的线程还执行完
        t1.join();
        t2.join();
        /*
        ThreeParamsEquals<Enum, Enum, Enum> equals = (Enum p1, Enum p2, Enum p3) -> p1.equals(p2) && p1.equals(p3);
        while (true){
            if (equals.equals(Thread.State.TERMINATED, t1.getState(), t2.getState())) {
                break;
            }
        }*/
        System.out.println(t1.getState());
        System.out.println(t2.getState());
        // 由于不是原子性操作,两个线程执行总共20000次i++,结果i的值都小于20000
        System.out.println(counter.getI());
    }


    /**
     * 线程安全的i++
     */
    @Test
    public void incrementSync() throws InterruptedException {

        Thread t1 = new Thread(() -> {
            for (int i = 0; i < count; i++) {
                counter.incrementSync();
            }
        });

        Thread t2 = new Thread(() -> {
            for (int i = 0; i < count; i++) {
                counter.incrementSync();
            }
        });

        t1.start();
        t2.start();

        t1.join();
        t2.join();

        System.out.println(t1.getState());
        System.out.println(t2.getState());
        // 由于保证了原子性,顺序性,可见性操作,两个线程执行总共20000次i++,结果i的值都等于20000
        System.out.println(counter.getI());
    }

    /**
     * 原子类AtomicInteger
     */
    @Test
    public void incrementAtomic() throws InterruptedException {

        Thread t1 = new Thread(() -> {
            for (int i = 0; i < count; i++) {
                counter.incrementAtomic();
            }
        });

        Thread t2 = new Thread(() -> {
            for (int i = 0; i < count; i++) {
                counter.incrementAtomic();
            }
        });

        t1.start();
        t2.start();

        t1.join();
        t2.join();

        System.out.println(t1.getState());
        System.out.println(t2.getState());
        // 由于保证了原子性,顺序性,可见性操作,两个线程执行总共20000次i++,结果i的值都等于20000
        System.out.println(counter.getAtomicInteger());
    }
}

猜你喜欢

转载自www.cnblogs.com/theRhyme/p/12129120.html
今日推荐