线程池面试题

为什么要使用线程池?

创建线程和销毁线程的花销是比较大的,这些时间有可能比处理业务的时间还要长。这样频繁的创建线程和销毁线程,再加上业务工作线程,消耗系统资源的时间,可能导致系统资源不足。(我们可以把创建和销毁的线程的过程去掉)

线程池有什么作用?

1、提高效率 创建好一定数量的线程放在池中,等需要使用的时候就从池中拿一个,这要比需要的时候创建一个线程对象要快的多。
2、方便管理 可以编写线程池管理代码对池中的线程同一进行管理,比如说启动时有该程序创建100个线程,每当有请求的时候,就分配一个线程去工作,如果刚好并发有101个请求,那多出的这一个请求可以排队等候,避免因无休止的创建线程导致系统崩溃。

说说几种常见的线程池及使用场景

1、newSingleThreadExecutor
创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。

public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); } 

2、newFixedThreadPool
创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。

 public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); } 

3、newCachedThreadPool
创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。

public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); } 

4、newScheduledThreadPool
创建一个定长线程池,支持定时及周期性任务执行。

public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) { return new ScheduledThreadPoolExecutor(corePoolSize); } 

线程池不允许使用Executors去创建,而是通过ThreadPoolExecutor的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险。 说明:Executors各个方法的弊端:
1)newFixedThreadPool和newSingleThreadExecutor:
  主要问题是堆积的请求处理队列可能会耗费非常大的内存,甚至OOM。
2)newCachedThreadPool和newScheduledThreadPool:
  主要问题是线程数最大数是Integer.MAX_VALUE,可能会创建数量非常多的线程,甚至OOM。
Positive example 1:

 //org.apache.commons.lang3.concurrent.BasicThreadFactory
 ScheduledExecutorService executorService =
                new ScheduledThreadPoolExecutor(1, new BasicThreadFactory.Builder().namingPattern("example-schedule-pool-%d").daemon(true).build() ); 

Positive example 2:

ThreadFactory namedThreadFactory = new ThreadFactoryBuilder() .setNameFormat("demo-pool-%d").build(); //Common Thread Pool ExecutorService pool = new ThreadPoolExecutor(5, 200, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(1024), namedThreadFactory, new ThreadPoolExecutor.AbortPolicy()); pool.execute(()-> System.out.println(Thread.currentThread().getName())); pool.shutdown();//gracefully shutdown 

Positive example 3:

 <bean id="userThreadPool"
        class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor"> <property name="corePoolSize" value="10" /> <property name="maxPoolSize" value="100" /> <property name="queueCapacity" value="2000" /> <property name="threadFactory" value= threadFactory /> <property name="rejectedExecutionHandler"> <ref local="rejectedExecutionHandler" /> </property> </bean> //in code userThreadPool.execute(thread); 

个人在项目中用到的是第三种,业务需求,每天会有调度服务器会通过http协议请求

<bean id="xxDataThreadPool"
          class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor"> <!-- 核心线程数 --> <property name="corePoolSize" value="50"/> <!-- 最大线程数 --> <property name="maxPoolSize" value="500"/> <!-- 队列最大长度 >=mainExecutor.maxSize --> <property name="queueCapacity" value="10"/> <!-- 线程池维护线程所允许的空闲时间 --> <property name="keepAliveSeconds" value="1"/> <!-- 线程池对拒绝任务(无线程可用)的处理策略 如果已经超过了限制丢弃消息,不进行处理 --> <property name="rejectedExecutionHandler"> <bean class="java.util.concurrent.ThreadPoolExecutor$DiscardPolicy"/> </property> </bean> 
@Controller
@RequestMapping("/windData") public class WindDataListener { private final static ThLogger logger = ThLoggerFactory.getLogger("WindDataDispatcher"); @Autowired private ThreadPoolTaskExecutor controlerThreadPool; @Autowired private ThreadPoolTaskExecutor windDataThreadPool; @Autowired private WindDataRuntimeService runtimeService; @Autowired private MaintainAlarmSender maintainAlarmSender; /** * 启动调度 */ @RequestMapping(value = "/receiveMsg", method = RequestMethod.GET) @ResponseBody public void receiveMsg() { final String paramLog = LogConst.BUSSINESS_NAME + LogConst.HTTP_API; logger.info("[{}][接收到调度消息]", paramLog); //定时调度,可能有多个http请求,把请求都放在controlerThreadPool里面 controlerThreadPool.execute(new WindDataDispatcher(windDataThreadPool, runtimeService, maintainAlarmSender, MDC.getCopyOfContextMap())); logger.info("[{}][响应给调度系统]", paramLog); } } 
public class WindDataDispatcher implements Runnable { private final static ThLogger logger = ThLoggerFactory.getLogger("WindDataDispatcher"); private ThreadPoolTaskExecutor taskThreadPool; private WindDataRuntimeService runtimeService; private MaintainAlarmSender maintainAlarmSender; private Map<Object, Object> mdcMap; public WindDataDispatcher(ThreadPoolTaskExecutor taskThreadPool, WindDataRuntimeService runtimeService, MaintainAlarmSender maintainAlarmSender, Map<Object, Object> mdcMap) { this.taskThreadPool = taskThreadPool; this.runtimeService = runtimeService; this.maintainAlarmSender = maintainAlarmSender; this.mdcMap = mdcMap; } @Override public void run() { if (null != mdcMap) { MDC.setContextMap(mdcMap); } final String paramLog = LogConst.BUSSINESS_NAME + LogConst.DISPATCHER; logger.info("[{}启动]", paramLog); taskThreadPool.execute(new WindDataExecutor(runtimeService, maintainAlarmSender, mdcMap)); logger.info("[{}结束]", paramLog); } } 
public class WindDataExecutor implements Runnable { private final static ThLogger logger = ThLoggerFactory.getLogger("WindDataDispatcher"); private WindDataRuntimeService runtimeService; private MaintainAlarmSender maintainAlarmSender; private Map<Object, Object> mdcMap; public WindDataExecutor(WindDataRuntimeService runtimeService, MaintainAlarmSender maintainAlarmSender, Map<Object, Object> mdcMap) { this.runtimeService = runtimeService; this.maintainAlarmSender = maintainAlarmSender; this.mdcMap = mdcMap; } @Override public void run() { if (null != mdcMap) { MDC.setContextMap(mdcMap); } final String paramLog = LogConst.BUSSINESS_NAME + LogConst.EXECUTOR; logger.info("[{}启动]", paramLog); try { runtimeService.groundWindData(); } catch (Exception e) { logger.error("[{}异常]{}", new Object[]{paramLog, e}); maintainAlarmSender.sendMail(MaintainAlarmSender.DEFAULT_MAIL_SUB, paramLog + "异常:" + e); } logger.info("[{}结束]", paramLog); } } 

线程池都有哪几种工作队列

1、ArrayBlockingQueue
是一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。
2、LinkedBlockingQueue
一个基于链表结构的阻塞队列,此队列按FIFO (先进先出) 排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列
3、SynchronousQueue
一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。
4、PriorityBlockingQueue
一个具有优先级的无限阻塞队列

线程池中的几种重要的参数及流程说明

 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; } 

corePoolSize:核心池的大小,这个参数跟后面讲述的线程池的实现原理有非常大的关系。在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待有任务到来才创建线程去执行任务,除非调用了prestartAllCoreThreads()或者prestartCoreThread()方法,从这2个方法的名字就可以看出,是预创建线程的意思,即在没有任务到来之前就创建corePoolSize个线程或者一个线程。默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中;

maximumPoolSize:线程池最大线程数,这个参数也是一个非常重要的参数,它表示在线程池中最多能创建多少个线程;

keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0;

unit:参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性:

TimeUnit.DAYS;               //天
TimeUnit.HOURS; //小时 TimeUnit.MINUTES; //分钟 TimeUnit.SECONDS; //秒 TimeUnit.MILLISECONDS; //毫秒 TimeUnit.MICROSECONDS; //微妙 TimeUnit.NANOSECONDS; //纳秒 

workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择:

ArrayBlockingQueue
LinkedBlockingQueue
SynchronousQueue
PriorityBlockingQueue

ArrayBlockingQueue和PriorityBlockingQueue使用较少,一般使用LinkedBlockingQueue和SynchronousQueue。线程池的排队策略与BlockingQueue有关。

threadFactory:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程做些更有意义的事情,比如设置daemon和优先级等等

handler:表示当拒绝处理任务时的策略,有以下四种取值:

1、AbortPolicy:直接抛出异常。
2、CallerRunsPolicy:只用调用者所在线程来运行任务。
3、DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。 4、DiscardPolicy:不处理,丢弃掉。 5、也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。如记录日志或持久化不能处理的任务。 /** * A handler for rejected tasks that runs the rejected task * directly in the calling thread of the {@code execute} method, * unless the executor has been shut down, in which case the task * is discarded. */ public static class CallerRunsPolicy implements RejectedExecutionHandler { /** * Creates a {@code CallerRunsPolicy}. */ public CallerRunsPolicy() { } /** * Executes task r in the caller's thread, unless the executor * has been shut down, in which case the task is discarded. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task */ public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { if (!e.isShutdown()) { r.run(); } } } /** * A handler for rejected tasks that throws a * {@code RejectedExecutionException}. */ public static class AbortPolicy implements RejectedExecutionHandler { /** * Creates an {@code AbortPolicy}. */ public AbortPolicy() { } /** * Always throws RejectedExecutionException. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task * @throws RejectedExecutionException always */ public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { throw new RejectedExecutionException("Task " + r.toString() + " rejected from " + e.toString()); } } /** * A handler for rejected tasks that silently discards the * rejected task. */ public static class DiscardPolicy implements RejectedExecutionHandler { /** * Creates a {@code DiscardPolicy}. */ public DiscardPolicy() { } /** * Does nothing, which has the effect of discarding task r. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task */ public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { } } /** * A handler for rejected tasks that discards the oldest unhandled * request and then retries {@code execute}, unless the executor * is shut down, in which case the task is discarded. */ public static class DiscardOldestPolicy implements RejectedExecutionHandler { /** * Creates a {@code DiscardOldestPolicy} for the given executor. */ public DiscardOldestPolicy() { } /** * Obtains and ignores the next task that the executor * would otherwise execute, if one is immediately available, * and then retries execution of task r, unless the executor * is shut down, in which case task r is instead discarded. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task */ public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { if (!e.isShutdown()) { e.getQueue().poll(); e.execute(r); } } } 

ThreadPoolExecutor 源码理解 https://www.cnblogs.com/dolphin0520/p/3932921.html

 public static void test(int size) { ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(5, 20, 2, TimeUnit.SECONDS, new LinkedBlockingQueue<>(5)); for (int i = 0; i < size; i++) { poolExecutor.execute(new DemoTask(i)); Console.log("poolSize:" + poolExecutor.getPoolSize()); Console.log("corePoolSize:" + poolExecutor.getCorePoolSize()); Console.log("maximumPoolSize:" + poolExecutor.getMaximumPoolSize()); Console.log("queue:" + poolExecutor.getQueue().size()); Console.log("completedTaskCount:" + poolExecutor.getCompletedTaskCount()); Console.log("largestPoolSize:" + poolExecutor.getLargestPoolSize()); Console.log("keepAliveTime:" + poolExecutor.getKeepAliveTime(TimeUnit.SECONDS)); } poolExecutor.shutdown(); } class DemoTask implements Runnable { private int taskNum; public DemoTask(int taskNum) { this.taskNum = taskNum; } @Override public void run() { Console.log(StringUtils.center("正在执行" + taskNum, 20, "=")); try { Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } Console.log(StringUtils.center("执行完毕" + taskNum, 20, "=")); } } 
=======正在执行0========
poolSize:1
corePoolSize:5
maximumPoolSize:20 queue:0 completedTaskCount:0 largestPoolSize:1 keepAliveTime:2 poolSize:2 corePoolSize:5 maximumPoolSize:20 queue:0 completedTaskCount:0 =======正在执行1======== largestPoolSize:2 keepAliveTime:2 poolSize:3 corePoolSize:5 maximumPoolSize:20 =======正在执行2======== queue:0 completedTaskCount:0 largestPoolSize:3 keepAliveTime:2 poolSize:4 corePoolSize:5 maximumPoolSize:20 queue:0 =======正在执行3======== completedTaskCount:0 largestPoolSize:4 keepAliveTime:2 poolSize:5 corePoolSize:5 =======正在执行4======== maximumPoolSize:20 queue:0 completedTaskCount:0 largestPoolSize:5 keepAliveTime:2 poolSize:5 corePoolSize:5 maximumPoolSize:20 queue:1 completedTaskCount:0 largestPoolSize:5 keepAliveTime:2 poolSize:5 corePoolSize:5 maximumPoolSize:20 queue:2 completedTaskCount:0 largestPoolSize:5 keepAliveTime:2 poolSize:5 corePoolSize:5 maximumPoolSize:20 queue:3 completedTaskCount:0 largestPoolSize:5 keepAliveTime:2 poolSize:5 corePoolSize:5 maximumPoolSize:20 queue:4 completedTaskCount:0 largestPoolSize:5 keepAliveTime:2 poolSize:5 corePoolSize:5 maximumPoolSize:20 queue:5 completedTaskCount:0 largestPoolSize:5 keepAliveTime:2 poolSize:6 corePoolSize:5 maximumPoolSize:20 queue:5 completedTaskCount:0 largestPoolSize:6 keepAliveTime:2 poolSize:7 corePoolSize:5 maximumPoolSize:20 queue:5 completedTaskCount:0 largestPoolSize:7 keepAliveTime:2 =======正在执行11======= poolSize:8 corePoolSize:5 maximumPoolSize:20 queue:5 completedTaskCount:0 =======正在执行12======= =======正在执行10======= largestPoolSize:8 keepAliveTime:2 poolSize:9 corePoolSize:5 =======正在执行13======= maximumPoolSize:20 queue:5 completedTaskCount:0 largestPoolSize:9 keepAliveTime:2 poolSize:10 corePoolSize:5 maximumPoolSize:20 =======正在执行14======= queue:5 completedTaskCount:0 largestPoolSize:10 keepAliveTime:2 poolSize:11 corePoolSize:5 maximumPoolSize:20 queue:5 =======正在执行15======= completedTaskCount:0 largestPoolSize:11 keepAliveTime:2 poolSize:12 corePoolSize:5 maximumPoolSize:20 queue:5 completedTaskCount:0 =======正在执行16======= largestPoolSize:12 keepAliveTime:2 poolSize:13 corePoolSize:5 maximumPoolSize:20 =======正在执行17======= queue:5 completedTaskCount:0 largestPoolSize:13 keepAliveTime:2 poolSize:14 corePoolSize:5 maximumPoolSize:20 queue:5 =======正在执行18======= completedTaskCount:0 largestPoolSize:14 keepAliveTime:2 poolSize:15 corePoolSize:5 maximumPoolSize:20 =======正在执行19======= queue:5 completedTaskCount:0 largestPoolSize:15 keepAliveTime:2 =======执行完毕0======== =======正在执行5======== =======执行完毕1======== =======执行完毕2======== =======正在执行6======== =======正在执行7======== =======执行完毕4======== =======正在执行8======== =======执行完毕3======== =======正在执行9======== =======执行完毕13======= =======执行完毕12======= =======执行完毕10======= =======执行完毕11======= =======执行完毕15======= =======执行完毕16======= =======执行完毕14======= =======执行完毕19======= =======执行完毕18======= =======执行完毕17======= =======执行完毕5======== =======执行完毕7======== =======执行完毕6======== =======执行完毕8======== =======执行完毕9======== 

怎么理解无界队列和有界队列

有界队列
1.初始的poolSize < corePoolSize,提交的runnable任务,会直接做为new一个Thread的参数,立马执行 。
2.当提交的任务数超过了corePoolSize,会将当前的runable提交到一个block queue中。
3.有界队列满了之后,如果poolSize < maximumPoolsize时,会尝试new 一个Thread的进行救急处理,立马执行对应的runnable任务。
4.如果3中也无法处理了,就会走到第四步执行reject操作。
无界队列
与有界队列相比,除非系统资源耗尽,否则无界的任务队列不存在任务入队失败的情况。当有新的任务到来,系统的线程数小于corePoolSize时,则新建线程执行任务。当达到corePoolSize后,就不会继续增加,若后续仍有新的任务加入,而没有空闲的线程资源,则任务直接进入队列等待。若任务创建和处理的速度差异很大,无界队列会保持快速增长,直到耗尽系统内存。

当线程池的任务缓存队列已满并且线程池中的线程数目达到maximumPoolSize,如果还有任务到来就会采取任务拒绝策略。

如何合理配置线程池的大小

https://www.zhihu.com/question/38128980

猜你喜欢

转载自www.cnblogs.com/Treesir/p/11763399.html