java单列模式(Singleton)

优点:

    1、某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。

    2、省去了new操作符,降低了系统内存的使用频率,减轻GC压力。

    3、有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。

一个简单的单列类:

public class Singleton {

    /* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */
    private static Singleton instance = null;

    /* 私有构造方法,防止被实例化 */
    private Singleton() {
    }

    /* 静态工程方法,创建实例 */
    public static Singleton getInstance() {
        if (instance == null) {
            synchronized (instance) {
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }

    /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
    public Object readResolve() {
        return instance;
    }
}

在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间,然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就可能出错了,我们以A、B两个线程为例:

a>A、B线程同时进入了第一个if判断

b>A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();

c>由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。

d>B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。

e>此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。

所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:


一、使用Synchronized关键字来维护单例的实现

public class Singleton {

    /* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */
    private static Singleton instance = null;

    /* 私有构造方法,防止被实例化 */
    private Singleton() {
    }

    private static synchronized void syncInit() {
        if (instance == null) {
            instance = new Singleton();
        }
    }

    /* 静态工程方法,创建实例 */
    public static Singleton getInstance() {
        if (instance == null) {
            syncInit();
        }
        return instance;
    }

    /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
    public Object readResolve() {
        return instance;
    }
}

二、使用内部类来维护单例的实现:JVM内部的机制能够保证当一个类被加载的时候,这个类的加载过程是线程互斥的。这样当我们第一次调用getInstance的时候,JVM能够帮我们保证instance只被创建一次,并且会保证把赋值给instance的内存初始化完毕,这样我们就不用担心上面的问题。同时该方法也只会在第一次调用的时候使用互斥机制,这样就解决了低性能问题。

public class Singleton {

    /* 私有构造方法,防止被实例化 */
    private Singleton() {
    }

    /* 此处使用一个内部类来维护单例 */
    private static class SingletonFactory {
        private static Singleton instance = new Singleton();
    }

    /* 获取实例 */
    public static Singleton getInstance() {
        return SingletonFactory.instance;
    }

    /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
    public Object readResolve() {
        return getInstance();
    }
}

此处二者有什么不同?

1.静态类不能实现接口。(从类的角度说是可以的,但是那样就破坏了静态了。因为接口中不允许有static修饰的方法,所以即使实现了也是非静态的)

2.单例可以被延迟初始化,静态类一般在第一次加载是初始化。之所以延迟加载,是因为有些类比较庞大,所以延迟加载有助于提升性能。

3.单例类可以被继承,他的方法可以被覆写。但是静态类内部方法都是static,无法被覆写。

4.单例类比较灵活,毕竟从实现上只是一个普通的Java类,只要满足单例的基本需求,你可以在里面随心所欲的实现一些其它功能,但是静态类不行。

从上面这些概括中,基本可以看出二者的区别,但是,从另一方面讲,我们上面最后实现的那个单例模式,内部就是用一个静态类来实现的,所以,二者有很大的关联,只是我们考虑问题的层面不同罢了。两种思想的结合,才能造就出完美的解决方案,就像HashMap采用数组+链表来实现一样,其实生活中很多事情都是这样,单用不同的方法来处理问题,总是有优点也有缺点,最完美的方法是,结合各个方法的优点,才能最好的解决问题!


补充:采用“影子实例”的办法为单列对象的属性同步更新

public class Singleton {

    private static Singleton instance = null;
    private Vector properties = null;

    public Vector getProperties() {
        return properties;
    }

    private Singleton() {
    }

    private static synchronized void syncInit() {
        if (instance == null) {
            instance = new Singleton();
        }
    }

    public static Singleton getInstance() {
        if (instance == null) {
            syncInit();
        }
        return instance;
    }

    public void updateProperties() {
        Singleton shadow = new Singleton();
        properties = shadow.getProperties();
    }
}

猜你喜欢

转载自blog.csdn.net/qq_37211608/article/details/80093520