spark 数据倾斜优化

何谓数据倾斜?数据倾斜指的是,并行处理的数据集中,某一部分(如Spark或Kafka的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈。

一个经验结论是:一般情况下,OOM的原因都是数据倾斜。某个task任务数据量太大,GC的压力就很大。这比不了Kafka,因为kafka的内存是不经过JVM的。是基于Linux内核的Page.

数据倾斜俩大直接致命后果。

1 数据倾斜直接会导致一种情况:Out Of Memory。

2 运行速度慢,特别慢,非常慢,极端的慢,不可接受的慢。

 

定位数据倾斜问题:

  1.   查阅代码中的shuffle算子,例如reduceByKey、countByKey、groupByKey、join等算子,根据代码逻辑判断此处是否会出现数据倾斜;
  2.   查看Spark作业的log文件,log文件对于错误的记录会精确到代码的某一行,可以根据异常定位到的代码位置来明确错误发生在第几个stage,对应的shuffle算子是哪一个;

此时根据你执行操作的情况不同,可以有很多种查看key分布的方式:

如果是Spark SQL中的group by、join语句导致的数据倾斜,那么就查询一下SQL中使用的表的key分布情况。

如果是对Spark RDD执行shuffle算子导致的数据倾斜,那么可以在Spark作业中加入查看key分布的代码,比如RDD.countByKey()。然后对统计出来的各个key出现的次数,collect/take到客户端打印一下,就可以看到key的分布情况。

解决方案一:聚合原数据

比如数据源是Kafka

以Spark Stream通过DirectStream方式读取Kafka数据为例。由于Kafka的每一个Partition对应Spark的一个Task(Partition),所以Kafka内相关Topic的各Partition之间数据是否平衡,直接决定Spark处理该数据时是否会产生数据倾斜。

Kafka某一Topic内消息在不同Partition之间的分布,主要由Producer端所使用的Partition实现类决定。如果使用随机Partitioner,则每条消息会随机发送到一个Partition中,从而从概率上来讲,各Partition间的数据会达到平衡。此时源Stage(直接读取Kafka数据的Stage)不会产生数据倾斜。

 

1.减少shuffle

比如数据源是Hive

导致数据倾斜的是Hive表。如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spark对Hive表执行某个分析操作,那么比较适合使用这种技术方案。

方案实现思路:此时可以评估一下,是否可以通过Hive来进行数据预处理(即通过Hive ETL预先对数据按照key进行聚合,或者是预先和其他表进行join),然后在Spark作业中针对的数据源就不是原来的Hive表了,而是预处理后的Hive表。此时由于数据已经预先进行过聚合或join操作了,那么在Spark作业中也就不需要使用原先的shuffle类算子执行这类操作了。

2.减少key力度

3.增大key粒度

如果没有办法对每个key聚合出来一条数据,在特定场景下,可以考虑扩大key的聚合粒度。

例如,目前有10万条用户数据,当前key的粒度是(省,城市,区,日期),现在我们考虑扩大粒度,将key的粒度扩大为(省,城市,日期),这样的话,key的数量会减少,key之间的数据量差异也有可能会减少,由此可以减轻数据倾斜的现象和问题。(此方法只针对特定类型的数据有效,当应用场景不适宜时,会加重数据倾斜)

解决方案二:过滤导致倾斜的key

如果在Spark作业中允许丢弃某些数据,那么可以考虑将可能导致数据倾斜的key进行过滤,滤除可能导致数据倾斜的key对应的数据,这样,在Spark作业中就不会发生数据倾斜了。

解决方案三:提高shuffle操作中的reduce并行度

在大部分的shuffle算子中,都可以传入一个并行度的设置参数,比如reduceByKey(500),这个参数会决定shuffle过程中reduce端的并行度,在进行shuffle操作的时候,就会对应着创建指定数量的reduce task。

增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据

该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task中去处理,因此注定还是会发生数据倾斜的。

还可以调整增大或减小并行度

解决方案四:使用随机key实现双重聚合

首先,通过map算子给每个数据的key添加随机数前缀,对key进行打散,将原先一样的key变成不一样的key,然后进行第一次聚合,这样就可以让原本被一个task处理的数据分散到多个task上去做局部聚合;随后,去除掉每个key的前缀,再次进行聚合。

此方法对于由groupByKey、reduceByKey这类算子造成的数据倾斜由比较好的效果,仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案。

此方法也是前几种方案没有比较好的效果时要尝试的解决方案。

 

解决方案五:将reduce join转换为map join

方案适用场景:在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M或者一两G),比较适用此方案。

方案适用场景:在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M或者一两G),比较适用此方案。

适用场景

参与Join的一边数据集足够小,可被加载进Driver并通过Broadcast方法广播到各个Executor中。

优势

避免了Shuffle,彻底消除了数据倾斜产生的条件,可极大提升性能。

劣势

要求参与Join的一侧数据集足够小,并且主要适用于Join的场景,不适合聚合的场景,适用条件有限。

解决方案六:sample采样对倾斜key单独进行join

  1. 适用场景分析:

对于RDD中的数据,可以将其转换为一个中间表,或者是直接使用countByKey()的方式,看一个这个RDD中各个key对应的数据量,此时如果你发现整个RDD就一个key的数据量特别多,那么就可以考虑使用这种方法。

当数据量非常大时,可以考虑使用sample采样获取10%的数据,然后分析这10%的数据中哪个key可能会导致数据倾斜,然后将这个key对应的数据单独提取出来。

  1.     不适用场景分析:

如果一个RDD中导致数据倾斜的key很多,那么此方案不适用。

解决方案七:使用随机数以及扩容进行join

如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了,对于join操作,我们可以考虑对其中一个RDD数据进行扩容,另一个RDD进行稀释后再join。

我们会将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,需要对整个RDD进行数据扩容,对内存资源要求很高。

   核心思想:

选择一个RDD,使用flatMap进行扩容,对每条数据的key添加数值前缀(1~N的数值),将一条数据映射为多条数据;(扩容)

选择另外一个RDD,进行map映射操作,每条数据的key都打上一个随机数作为前缀(1~N的随机数);(稀释)

将两个处理后的RDD,进行join操作。

    局限性:

如果两个RDD都很大,那么将RDD进行N倍的扩容显然行不通;

使用扩容的方式只能缓解数据倾斜,不能彻底解决数据倾斜问题。

 

猜你喜欢

转载自blog.csdn.net/weixin_45194374/article/details/95043529
今日推荐