java二叉树与递归算法

java二叉树与递归算法

public class Solution {

    // Definition for a binary tree node.
    public class TreeNode {
        int val;
        TreeNode left;
        TreeNode right;
        TreeNode(int x) { val = x; }
    }

    public int maxDepth(TreeNode root) {
    	//递归终止的条件,节点为空递归就应该停止,如果没有递归终止条件不停的往下执行会栈溢出
        if(root == null)
            return 0;
        //递归的过程,描述算法逻辑
        return 1 + Math.max(maxDepth(root.left), maxDepth(root.right));
    }	

}

import java.util.LinkedList;

public class Solution {
    // Definition for a binary tree node.
    public class TreeNode {
        int val;
        TreeNode left;
        TreeNode right;
        TreeNode(int x) { val = x; }
    }

    public TreeNode invertTree(TreeNode root) {
    	//递归终止的条件,节点为空递归就应该停止,如果没有递归终止条件不停的往下执行会栈溢出  
        if(root == null)
            return null;
        
        //递归的过程,描述反转逻辑,现将左子树进行反转,对右子树进行反转,最后交换左右孩子两棵树的位置即可
        TreeNode left = invertTree(root.left);
        TreeNode right = invertTree(root.right);

        root.left = right;
        root.right = left;

        return root;
    }
}

递归的终止条件的陷阱

import java.util.LinkedList;

public class Solution {
	
	class Solution {

	    // Definition for a binary tree node.
	    public class TreeNode {
	        int val;
	        TreeNode left;
	        TreeNode right;
	        TreeNode(int x) { val = x; }
	    }

	    public boolean hasPathSum(TreeNode root, int sum) {

	        if(root == null)
	            return false;
	      //递归的终止条件左右子树都为空,看剩余的值是否等于根节点的值
	        if(root.left == null && root.right == null)
	            return sum == root.val;
	      //如果左子树不为空的话,遍历左子树,参数为总数与左子树遍历的根节点的差值
	      //如果右子树不为空的话,遍历右子树,参数为总数与右子树遍历的根节点的差值
	        return hasPathSum(root.left, sum - root.val)
	                || hasPathSum(root.right, sum - root.val);
	    }
	}
}

定义递归问题

import java.util.LinkedList;

public class Solution {
		
    // Definition for a binary tree node.
    public class TreeNode {
        int val;
        TreeNode left;
        TreeNode right;
        TreeNode(int x) { val = x; }
    }

    public List<String> binaryTreePaths(TreeNode root) {

        ArrayList<String> res = new ArrayList<String>();

        if(root == null)
            return res;
     
        //终止条件左右子树都为空
        if(root.left == null && root.right == null){
            res.add(Integer.toString(root.val));
            return res;
        }

      //递归遍历左子树的所有路径
        List<String> leftPaths = binaryTreePaths(root.left);
        for(String s: leftPaths){
            StringBuilder sb = new StringBuilder(Integer.toString(root.val));
            sb.append("->");
            sb.append(s);
            res.add(sb.toString());
        }

      //递归遍历右子树的所有路径
        List<String> rightPaths = binaryTreePaths(root.right);
        for(String s: rightPaths) {
            StringBuilder sb = new StringBuilder(Integer.toString(root.val));
            sb.append("->");
            sb.append(s);
            res.add(sb.toString());
        }

        return res;
    }	
}
ArrayList<String> res = new ArrayList<String>();
ArrayList<List<String>> totallist = new ArrayList<>();
binaryTreePaths(TreeNode root,res);
//递归与广度优先的不同在于递归能够一次性的走到头,然后会自动返回到最开始第一次进行进行递归遍历的地方
//广度优先则是根据不同的层级一层一层的遍历
//递归的返回值与递归的参数保存的状态是等价的,可以用递归的参数形式来取代递归的返回值
public static void binaryTreePaths(TreeNode root,List<String> res){
	
    if(root == null)
        return;

    if(root.left == null && root.right == null){
    	res.add(Integer.toString(root.val));
    	totallist.add(res);
        return;
    }
    
    res.add(Integer.toString(root.val));
    res.append("->");
    binaryTreePaths(root.left,res);
    binaryTreePaths(root.right,res);
}

复杂的递归逻辑

public class FindPath {
	   /// Definition for a binary tree node.
    public static class TreeNode {
        int val;
        TreeNode left;
        TreeNode right;
        TreeNode(int x) { val = x; }
    }

    // 在以root为根节点的二叉树中,寻找和为sum的路径,返回这样的路径个数
    public int pathSum(TreeNode root, int sum) {

        if(root == null)
            return 0;
    	//Node的value值不再路径中的情况,继续判断是否存在一个路径这个路径的node->left与node->right的值等于sum
        return findPath(root, sum)
                + pathSum(root.left , sum)
                + pathSum(root.right , sum);
    }
	

    // 在以node为根节点的二叉树中,寻找包含node的路径,和为sum
    // 返回这样的路径个数
    private int findPath(TreeNode node, int num){

        if(node == null)
            return 0;

        int res = 0;
        if(node.val == num)
            res += 1;
      
        //构成一个路径,这个路径最终的路径加上node的值等于sum,Node的节点一定在路径中
        res += findPath(node.left , num - node.val);
        res += findPath(node.right , num - node.val);

        return res;
    }

    public static void main(String[] args) {

        // 手动创建Leetcode题页上的测试用例。
        // 当然, 有更好的更智能的创建二叉树的方式, 有兴趣的同学可以自行研究编写程序:)

        /*****************
         * 测试用例:
         *
         *       10
         *      /  \
         *     5   -3
         *    / \    \
         *   3   2   11
         *  / \   \
         * 3  -2   1
         *****************/
        TreeNode node1 = new TreeNode(3);
        TreeNode node2 = new TreeNode(-2);

        TreeNode node3 = new TreeNode(3);
        node3.left = node1;
        node3.right = node2;

        TreeNode node4 = new TreeNode(1);
        TreeNode node5 = new TreeNode(2);
        node5.right = node4;

        TreeNode node6 = new TreeNode(5);
        node6.left = node3;
        node6.right = node5;

        TreeNode node7 = new TreeNode(11);
        TreeNode node8 = new TreeNode(-3);
        node8.right = node7;

        TreeNode node9 = new TreeNode(10);
        node9.left = node6;
        node9.right = node8;

        System.out.println((new Solution()).pathSum(node9, 8));
    }
}

package jdk;

public class BinaryTree {
	class Solution {

	    // Definition for a binary tree node.
	    public class TreeNode {
	        int val;
	        TreeNode left;
	        TreeNode right;
	        TreeNode(int x) { val = x; }
	    }

	    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {

	        if(p == null || q == null)
	            throw new IllegalArgumentException("p or q can not be null.");

	        if(root == null)
	            return null;
	        //递归结构如果p和q都小于根节点root的值,最近的公共祖先一定不为root,在左子树中继续递归寻找
	        if(p.val < root.val && q.val < root.val)
	            return lowestCommonAncestor(root.left, p, q);
	      //递归结构如果p和q都大于根节点root的值,最近的公共祖先一定不为root,在右子树中继续递归寻找
	        if(p.val > root.val && q.val > root.val)
	            return lowestCommonAncestor(root.right, p, q);

	        assert p.val == root.val || q.val == root.val
	                || (root.val - p.val) * (root.val - q.val) < 0;

	        return root;
	    }
	}
}

猜你喜欢

转载自blog.csdn.net/qq_35029061/article/details/94373853